MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1axmp Unicode version

Theorem re1axmp 1519
Description: ax-mp 8 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
re1axmp.min  |-  ph
re1axmp.maj  |-  ( ph  ->  ps )
Assertion
Ref Expression
re1axmp  |-  ps

Proof of Theorem re1axmp
StepHypRef Expression
1 re1axmp.min . 2  |-  ph
2 re1axmp.maj . . 3  |-  ( ph  ->  ps )
3 rb-imdf 1505 . . . 4  |-  -.  ( -.  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps )
)  \/  -.  ( -.  ( -.  ph  \/  ps )  \/  ( ph  ->  ps ) ) )
43rblem6 1517 . . 3  |-  ( -.  ( ph  ->  ps )  \/  ( -.  ph  \/  ps ) )
52, 4anmp 1506 . 2  |-  ( -. 
ph  \/  ps )
61, 5anmp 1506 1  |-  ps
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator