Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1tbw4 Structured version   Unicode version

Theorem re1tbw4 1522
 Description: tbw-ax4 1477 rederived from merco2 1510. This theorem, along with re1tbw1 1519, re1tbw2 1520, and re1tbw3 1521, shows that merco2 1510, along with ax-mp 8, can be used as a complete axiomatization of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re1tbw4

Proof of Theorem re1tbw4
StepHypRef Expression
1 re1tbw3 1521 . . 3
2 re1tbw2 1520 . . . 4
3 re1tbw1 1519 . . . 4
42, 3ax-mp 8 . . 3
51, 4ax-mp 8 . 2
6 re1tbw3 1521 . . . . 5
7 re1tbw2 1520 . . . . . 6
8 re1tbw1 1519 . . . . . 6
97, 8ax-mp 8 . . . . 5
106, 9ax-mp 8 . . . 4
11 mercolem3 1513 . . . . 5
12 merco2 1510 . . . . 5
1311, 12ax-mp 8 . . . 4
1410, 13ax-mp 8 . . 3
155, 14ax-mp 8 . 2
165, 15ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfal 1326 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8 This theorem depends on definitions:  df-bi 178  df-tru 1328  df-fal 1329
 Copyright terms: Public domain W3C validator