Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  re2luk1 Structured version   Unicode version

Theorem re2luk1 1540
 Description: luk-1 1430 derived from Russell-Bernays'. (Contributed by Anthony Hart, 19-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
re2luk1

Proof of Theorem re2luk1
StepHypRef Expression
1 rb-imdf 1525 . . . 4
21rblem7 1538 . . 3
3 rb-imdf 1525 . . . . . . . 8
43rblem6 1537 . . . . . . 7
5 rb-ax2 1528 . . . . . . . 8
6 rb-ax4 1530 . . . . . . . . . 10
7 rb-ax3 1529 . . . . . . . . . 10
86, 7rbsyl 1531 . . . . . . . . 9
9 rb-ax4 1530 . . . . . . . . . . 11
10 rb-ax3 1529 . . . . . . . . . . 11
119, 10rbsyl 1531 . . . . . . . . . 10
12 rb-ax2 1528 . . . . . . . . . 10
1311, 12anmp 1526 . . . . . . . . 9
148, 13rblem1 1532 . . . . . . . 8
155, 14rbsyl 1531 . . . . . . 7
164, 15anmp 1526 . . . . . 6
17 rb-imdf 1525 . . . . . . 7
1817rblem7 1538 . . . . . 6
1916, 18rblem1 1532 . . . . 5
20 rb-ax1 1527 . . . . . 6
21 rb-ax2 1528 . . . . . . 7
22 rb-ax4 1530 . . . . . . . . . 10
23 rb-ax3 1529 . . . . . . . . . 10
2422, 23rbsyl 1531 . . . . . . . . 9
25 rb-ax4 1530 . . . . . . . . . 10
26 rb-ax3 1529 . . . . . . . . . 10
2725, 26rbsyl 1531 . . . . . . . . 9
2824, 27, 11rblem4 1535 . . . . . . . 8
29 rb-ax2 1528 . . . . . . . 8
3028, 29rbsyl 1531 . . . . . . 7
3121, 30rbsyl 1531 . . . . . 6
3220, 31anmp 1526 . . . . 5
3319, 32rbsyl 1531 . . . 4
34 rb-imdf 1525 . . . . 5
3534rblem6 1537 . . . 4
3633, 35rbsyl 1531 . . 3
372, 36rbsyl 1531 . 2
38 rb-imdf 1525 . . 3
3938rblem7 1538 . 2
4037, 39anmp 1526 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wo 359 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362
 Copyright terms: Public domain W3C validator