MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccn2 Unicode version

Theorem reccn2 12070
Description: The reciprocal function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.) (Revised by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
reccn2.t  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
Assertion
Ref Expression
reccn2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Distinct variable groups:    y, z, A    y, B, z    y, T, z

Proof of Theorem reccn2
StepHypRef Expression
1 reccn2.t . . 3  |-  T  =  ( if ( 1  <_  ( ( abs `  A )  x.  B
) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )
2 1rp 10358 . . . . 5  |-  1  e.  RR+
3 simpl 443 . . . . . . . 8  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A  e.  ( CC  \  {
0 } ) )
4 eldifsn 3749 . . . . . . . 8  |-  ( A  e.  ( CC  \  { 0 } )  <-> 
( A  e.  CC  /\  A  =/=  0 ) )
53, 4sylib 188 . . . . . . 7  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
6 absrpcl 11773 . . . . . . 7  |-  ( ( A  e.  CC  /\  A  =/=  0 )  -> 
( abs `  A
)  e.  RR+ )
75, 6syl 15 . . . . . 6  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( abs `  A )  e.  RR+ )
8 rpmulcl 10375 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR+  /\  B  e.  RR+ )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
97, 8sylancom 648 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  x.  B )  e.  RR+ )
10 ifcl 3601 . . . . 5  |-  ( ( 1  e.  RR+  /\  (
( abs `  A
)  x.  B )  e.  RR+ )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
112, 9, 10sylancr 644 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  if ( 1  <_  ( ( abs `  A )  x.  B ) ,  1 ,  ( ( abs `  A )  x.  B
) )  e.  RR+ )
127rphalfcld 10402 . . . 4  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( ( abs `  A )  /  2 )  e.  RR+ )
1311, 12rpmulcld 10406 . . 3  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  e.  RR+ )
141, 13syl5eqel 2367 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  T  e.  RR+ )
155adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  e.  CC  /\  A  =/=  0 ) )
1615simpld 445 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  A  e.  CC )
17 simprl 732 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  ( CC  \  {
0 } ) )
18 eldifsn 3749 . . . . . . . . . . 11  |-  ( z  e.  ( CC  \  { 0 } )  <-> 
( z  e.  CC  /\  z  =/=  0 ) )
1917, 18sylib 188 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  e.  CC  /\  z  =/=  0 ) )
2019simpld 445 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  z  e.  CC )
2116, 20mulcld 8855 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  e.  CC )
22 mulne0 9410 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( A  x.  z
)  =/=  0 )
2315, 19, 22syl2anc 642 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  z )  =/=  0 )
2416, 20, 21, 23divsubdird 9575 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( A  /  ( A  x.  z ) )  -  ( z  /  ( A  x.  z )
) ) )
2516mulid1d 8852 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  x.  1 )  =  A )
2625oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( A  / 
( A  x.  z
) ) )
27 ax-1cn 8795 . . . . . . . . . . . 12  |-  1  e.  CC
2827a1i 10 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  CC )
29 divcan5 9462 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( z  e.  CC  /\  z  =/=  0 )  /\  ( A  e.  CC  /\  A  =/=  0 ) )  -> 
( ( A  x.  1 )  /  ( A  x.  z )
)  =  ( 1  /  z ) )
3028, 19, 15, 29syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  x.  1 )  /  ( A  x.  z ) )  =  ( 1  / 
z ) )
3126, 30eqtr3d 2317 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  /  ( A  x.  z ) )  =  ( 1  /  z
) )
3220mulid1d 8852 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  1 )  =  z )
3320, 16mulcomd 8856 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  x.  A )  =  ( A  x.  z ) )
3432, 33oveq12d 5876 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( z  / 
( A  x.  z
) ) )
35 divcan5 9462 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  ( A  e.  CC  /\  A  =/=  0 )  /\  ( z  e.  CC  /\  z  =/=  0 ) )  -> 
( ( z  x.  1 )  /  (
z  x.  A ) )  =  ( 1  /  A ) )
3628, 15, 19, 35syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( z  x.  1 )  /  ( z  x.  A ) )  =  ( 1  /  A ) )
3734, 36eqtr3d 2317 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  /  ( A  x.  z ) )  =  ( 1  /  A ) )
3831, 37oveq12d 5876 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  /  ( A  x.  z )
)  -  ( z  /  ( A  x.  z ) ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
3924, 38eqtrd 2315 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( A  -  z
)  /  ( A  x.  z ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4039fveq2d 5529 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
4116, 20subcld 9157 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( A  -  z )  e.  CC )
4241, 21, 23absdivd 11937 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( A  -  z )  / 
( A  x.  z
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4340, 42eqtr3d 2317 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  =  ( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) ) )
4416, 20abssubd 11935 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  =  ( abs `  (
z  -  A ) ) )
4520, 16subcld 9157 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
z  -  A )  e.  CC )
4645abscld 11918 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  e.  RR )
4744, 46eqeltrd 2357 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  e.  RR )
4814adantr 451 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR+ )
4948rpred 10390 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  e.  RR )
5021abscld 11918 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR )
51 rpre 10360 . . . . . . . . 9  |-  ( B  e.  RR+  ->  B  e.  RR )
5251ad2antlr 707 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  RR )
5350, 52remulcld 8863 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  e.  RR )
54 simprr 733 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( z  -  A ) )  < 
T )
5544, 54eqbrtrd 4043 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
T )
569adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR+ )
5756rpred 10390 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  x.  B )  e.  RR )
5812adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR+ )
5958rpred 10390 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  RR )
6057, 59remulcld 8863 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  e.  RR )
61 1re 8837 . . . . . . . . . . 11  |-  1  e.  RR
62 min2 10518 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6361, 57, 62sylancr 644 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B ) )
6411adantr 451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR+ )
6564rpred 10390 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  e.  RR )
6665, 57, 58lemul1d 10429 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  ( ( abs `  A )  x.  B )  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) ) )
6763, 66mpbid 201 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( ( ( abs `  A )  x.  B )  x.  ( ( abs `  A
)  /  2 ) ) )
681, 67syl5eqbr 4056 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( ( abs `  A )  x.  B
)  x.  ( ( abs `  A )  /  2 ) ) )
6920abscld 11918 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  RR )
7016abscld 11918 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  RR )
7170recnd 8861 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  e.  CC )
72712halvesd 9957 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  =  ( abs `  A ) )
7370, 69resubcld 9211 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  e.  RR )
7416, 20abs2difd 11939 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  <_ 
( abs `  ( A  -  z )
) )
75 min1 10517 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1  e.  RR  /\  ( ( abs `  A
)  x.  B )  e.  RR )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
7661, 57, 75sylancr 644 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1 )
7761a1i 10 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  1  e.  RR )
7865, 77, 58lemul1d 10429 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  <_  1  <->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) ) )
7976, 78mpbid 201 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( if ( 1  <_  (
( abs `  A
)  x.  B ) ,  1 ,  ( ( abs `  A
)  x.  B ) )  x.  ( ( abs `  A )  /  2 ) )  <_  ( 1  x.  ( ( abs `  A
)  /  2 ) ) )
801, 79syl5eqbr 4056 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( 1  x.  (
( abs `  A
)  /  2 ) ) )
8159recnd 8861 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  e.  CC )
8281mulid2d 8853 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
1  x.  ( ( abs `  A )  /  2 ) )  =  ( ( abs `  A )  /  2
) )
8380, 82breqtrd 4047 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <_  ( ( abs `  A
)  /  2 ) )
8447, 49, 59, 55, 83ltletrd 8976 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  A
)  /  2 ) )
8573, 47, 59, 74, 84lelttrd 8974 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 ) )
8670, 69, 59ltsubadd2d 9370 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  -  ( abs `  z ) )  < 
( ( abs `  A
)  /  2 )  <-> 
( abs `  A
)  <  ( ( abs `  z )  +  ( ( abs `  A
)  /  2 ) ) ) )
8785, 86mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  A )  < 
( ( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8872, 87eqbrtrd 4043 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  +  ( ( abs `  A )  /  2
) )  <  (
( abs `  z
)  +  ( ( abs `  A )  /  2 ) ) )
8959, 69, 59ltadd1d 9365 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  /  2 )  <  ( abs `  z
)  <->  ( ( ( abs `  A )  /  2 )  +  ( ( abs `  A
)  /  2 ) )  <  ( ( abs `  z )  +  ( ( abs `  A )  /  2
) ) ) )
9088, 89mpbird 223 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  A
)  /  2 )  <  ( abs `  z
) )
9159, 69, 56, 90ltmul2dd 10442 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9216, 20absmuld 11936 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  =  ( ( abs `  A
)  x.  ( abs `  z ) ) )
9392oveq1d 5873 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  ( abs `  z
) )  x.  B
) )
9469recnd 8861 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  z )  e.  CC )
9552recnd 8861 . . . . . . . . . . 11  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  B  e.  CC )
9671, 94, 95mul32d 9022 . . . . . . . . . 10  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  ( abs `  z ) )  x.  B )  =  ( ( ( abs `  A
)  x.  B )  x.  ( abs `  z
) ) )
9793, 96eqtrd 2315 . . . . . . . . 9  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  x.  z )
)  x.  B )  =  ( ( ( abs `  A )  x.  B )  x.  ( abs `  z
) ) )
9891, 97breqtrrd 4049 . . . . . . . 8  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  A
)  x.  B )  x.  ( ( abs `  A )  /  2
) )  <  (
( abs `  ( A  x.  z )
)  x.  B ) )
9949, 60, 53, 68, 98lelttrd 8974 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  T  <  ( ( abs `  ( A  x.  z )
)  x.  B ) )
10047, 49, 53, 55, 99lttrd 8977 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  -  z ) )  < 
( ( abs `  ( A  x.  z )
)  x.  B ) )
10121, 23absrpcld 11930 . . . . . . 7  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( A  x.  z ) )  e.  RR+ )
10247, 52, 101ltdivmuld 10437 . . . . . 6  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( ( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B  <->  ( abs `  ( A  -  z )
)  <  ( ( abs `  ( A  x.  z ) )  x.  B ) ) )
103100, 102mpbird 223 . . . . 5  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  (
( abs `  ( A  -  z )
)  /  ( abs `  ( A  x.  z
) ) )  < 
B )
10443, 103eqbrtrd 4043 . . . 4  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  /\  ( abs `  ( z  -  A
) )  <  T
) )  ->  ( abs `  ( ( 1  /  z )  -  ( 1  /  A
) ) )  < 
B )
105104expr 598 . . 3  |-  ( ( ( A  e.  ( CC  \  { 0 } )  /\  B  e.  RR+ )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
106105ralrimiva 2626 . 2  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
107 breq2 4027 . . . . 5  |-  ( y  =  T  ->  (
( abs `  (
z  -  A ) )  <  y  <->  ( abs `  ( z  -  A
) )  <  T
) )
108107imbi1d 308 . . . 4  |-  ( y  =  T  ->  (
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <-> 
( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
109108ralbidv 2563 . . 3  |-  ( y  =  T  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B )  <->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A
) )  <  T  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) ) )
110109rspcev 2884 . 2  |-  ( ( T  e.  RR+  /\  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  T  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
11114, 106, 110syl2anc 642 1  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  B  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149   ifcif 3565   {csn 3640   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   RR+crp 10354   abscabs 11719
This theorem is referenced by:  rlimdiv  12119  divcn  18372  climrec  27729
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721
  Copyright terms: Public domain W3C validator