MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recextlem2 Unicode version

Theorem recextlem2 9586
Description: Lemma for recex 9587. (Contributed by Eric Schmidt, 23-May-2007.)
Assertion
Ref Expression
recextlem2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) )  =/=  0 )  ->  (
( A  x.  A
)  +  ( B  x.  B ) )  =/=  0 )

Proof of Theorem recextlem2
StepHypRef Expression
1 oveq2 6029 . . . . . . . . 9  |-  ( B  =  0  ->  (
_i  x.  B )  =  ( _i  x.  0 ) )
2 ax-icn 8983 . . . . . . . . . 10  |-  _i  e.  CC
32mul01i 9189 . . . . . . . . 9  |-  ( _i  x.  0 )  =  0
41, 3syl6eq 2436 . . . . . . . 8  |-  ( B  =  0  ->  (
_i  x.  B )  =  0 )
5 oveq12 6030 . . . . . . . 8  |-  ( ( A  =  0  /\  ( _i  x.  B
)  =  0 )  ->  ( A  +  ( _i  x.  B
) )  =  ( 0  +  0 ) )
64, 5sylan2 461 . . . . . . 7  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  ( _i  x.  B
) )  =  ( 0  +  0 ) )
7 00id 9174 . . . . . . 7  |-  ( 0  +  0 )  =  0
86, 7syl6eq 2436 . . . . . 6  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( A  +  ( _i  x.  B
) )  =  0 )
98necon3ai 2591 . . . . 5  |-  ( ( A  +  ( _i  x.  B ) )  =/=  0  ->  -.  ( A  =  0  /\  B  =  0
) )
10 neorian 2638 . . . . 5  |-  ( ( A  =/=  0  \/  B  =/=  0 )  <->  -.  ( A  =  0  /\  B  =  0 ) )
119, 10sylibr 204 . . . 4  |-  ( ( A  +  ( _i  x.  B ) )  =/=  0  ->  ( A  =/=  0  \/  B  =/=  0 ) )
12 remulcl 9009 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
1312anidms 627 . . . . . . . 8  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
14 remulcl 9009 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  B  e.  RR )  ->  ( B  x.  B
)  e.  RR )
1514anidms 627 . . . . . . . 8  |-  ( B  e.  RR  ->  ( B  x.  B )  e.  RR )
1613, 15anim12i 550 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR ) )
1716adantr 452 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  =/=  0
)  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
18 msqgt0 9481 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  =/=  0 )  -> 
0  <  ( A  x.  A ) )
19 msqge0 9482 . . . . . . . 8  |-  ( B  e.  RR  ->  0  <_  ( B  x.  B
) )
2018, 19anim12i 550 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  A  =/=  0 )  /\  B  e.  RR )  ->  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )
2120an32s 780 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  =/=  0
)  ->  ( 0  <  ( A  x.  A )  /\  0  <_  ( B  x.  B
) ) )
22 addgtge0 9449 . . . . . 6  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  < 
( A  x.  A
)  /\  0  <_  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
2317, 21, 22syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  A  =/=  0
)  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
2416adantr 452 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  =/=  0
)  ->  ( ( A  x.  A )  e.  RR  /\  ( B  x.  B )  e.  RR ) )
25 msqge0 9482 . . . . . . . 8  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
26 msqgt0 9481 . . . . . . . 8  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
0  <  ( B  x.  B ) )
2725, 26anim12i 550 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  B  =/=  0 ) )  ->  ( 0  <_  ( A  x.  A )  /\  0  <  ( B  x.  B
) ) )
2827anassrs 630 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  =/=  0
)  ->  ( 0  <_  ( A  x.  A )  /\  0  <  ( B  x.  B
) ) )
29 addgegt0 9448 . . . . . 6  |-  ( ( ( ( A  x.  A )  e.  RR  /\  ( B  x.  B
)  e.  RR )  /\  ( 0  <_ 
( A  x.  A
)  /\  0  <  ( B  x.  B ) ) )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3024, 28, 29syl2anc 643 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  B  =/=  0
)  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
3123, 30jaodan 761 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  =/=  0  \/  B  =/=  0 ) )  -> 
0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3211, 31sylan2 461 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  +  ( _i  x.  B
) )  =/=  0
)  ->  0  <  ( ( A  x.  A
)  +  ( B  x.  B ) ) )
33323impa 1148 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) )  =/=  0 )  ->  0  <  ( ( A  x.  A )  +  ( B  x.  B ) ) )
3433gt0ne0d 9524 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( A  +  ( _i  x.  B ) )  =/=  0 )  ->  (
( A  x.  A
)  +  ( B  x.  B ) )  =/=  0 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2551   class class class wbr 4154  (class class class)co 6021   RRcr 8923   0cc0 8924   _ici 8926    + caddc 8927    x. cmul 8929    < clt 9054    <_ cle 9055
This theorem is referenced by:  recex  9587
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-po 4445  df-so 4446  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227
  Copyright terms: Public domain W3C validator