MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recld2 Unicode version

Theorem recld2 18320
Description: The real numbers are a closed set in the topology on  CC. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypothesis
Ref Expression
recld2.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
recld2  |-  RR  e.  ( Clsd `  J )

Proof of Theorem recld2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 3303 . . 3  |-  ( CC 
\  RR )  C_  CC
2 eldifi 3298 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  x  e.  CC )
32imcld 11680 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  RR )
43recnd 8861 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  e.  CC )
5 eldifn 3299 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  -.  x  e.  RR )
6 reim0b 11604 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
x  e.  RR  <->  ( Im `  x )  =  0 ) )
72, 6syl 15 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( x  e.  RR  <->  ( Im `  x )  =  0 ) )
87necon3bbid 2480 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( -.  x  e.  RR  <->  ( Im `  x )  =/=  0
) )
95, 8mpbid 201 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( Im
`  x )  =/=  0 )
104, 9absrpcld 11930 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR+ )
11 cnxmet 18282 . . . . . . . . 9  |-  ( abs 
o.  -  )  e.  ( * Met `  CC )
1211a1i 10 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs 
o.  -  )  e.  ( * Met `  CC ) )
134abscld 11918 . . . . . . . . 9  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR )
1413rexrd 8881 . . . . . . . 8  |-  ( x  e.  ( CC  \  RR )  ->  ( abs `  ( Im `  x
) )  e.  RR* )
15 elbl 17949 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( * Met `  CC )  /\  x  e.  CC  /\  ( abs `  ( Im `  x ) )  e. 
RR* )  ->  (
y  e.  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
1612, 2, 14, 15syl3anc 1182 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  <->  ( y  e.  CC  /\  ( x ( abs  o.  -  ) y )  < 
( abs `  (
Im `  x )
) ) ) )
17 simprl 732 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  CC )
182adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  x  e.  CC )
19 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  RR )
2019recnd 8861 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  y  e.  CC )
2118, 20imsubd 11702 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( ( Im `  x )  -  ( Im `  y ) ) )
22 reim0 11603 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  RR  ->  (
Im `  y )  =  0 )
2322adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  y
)  =  0 )
2423oveq2d 5874 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  (
Im `  y )
)  =  ( ( Im `  x )  -  0 ) )
254adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  x
)  e.  CC )
2625subid1d 9146 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( Im `  x )  -  0 )  =  ( Im
`  x ) )
2721, 24, 263eqtrd 2319 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( Im `  (
x  -  y ) )  =  ( Im
`  x ) )
2827fveq2d 5529 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  =  ( abs `  ( Im `  x
) ) )
2918, 20subcld 9157 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x  -  y
)  e.  CC )
30 absimle 11794 . . . . . . . . . . . . . . . . 17  |-  ( ( x  -  y )  e.  CC  ->  ( abs `  ( Im `  ( x  -  y
) ) )  <_ 
( abs `  (
x  -  y ) ) )
3129, 30syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  ( x  -  y ) ) )  <_  ( abs `  ( x  -  y
) ) )
3228, 31eqbrtrrd 4045 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) ) )
3325abscld 11918 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
Im `  x )
)  e.  RR )
3429abscld 11918 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( abs `  (
x  -  y ) )  e.  RR )
3533, 34lenltd 8965 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( abs `  (
Im `  x )
)  <_  ( abs `  ( x  -  y
) )  <->  -.  ( abs `  ( x  -  y ) )  < 
( abs `  (
Im `  x )
) ) )
3632, 35mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( abs `  (
x  -  y ) )  <  ( abs `  ( Im `  x
) ) )
37 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
3837cnmetdval 18280 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
3918, 20, 38syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
4039breq1d 4033 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  <->  ( abs `  ( x  -  y
) )  <  ( abs `  ( Im `  x ) ) ) )
4136, 40mtbird 292 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  RR )  ->  -.  ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) ) )
4241ex 423 . . . . . . . . . . . 12  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  RR  ->  -.  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )
4342con2d 107 . . . . . . . . . . 11  |-  ( x  e.  ( CC  \  RR )  ->  ( ( x ( abs  o.  -  ) y )  <  ( abs `  (
Im `  x )
)  ->  -.  y  e.  RR ) )
4443adantr 451 . . . . . . . . . 10  |-  ( ( x  e.  ( CC 
\  RR )  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  <  ( abs `  ( Im `  x ) )  ->  -.  y  e.  RR ) )
4544impr 602 . . . . . . . . 9  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  -.  y  e.  RR )
46 eldif 3162 . . . . . . . . 9  |-  ( y  e.  ( CC  \  RR )  <->  ( y  e.  CC  /\  -.  y  e.  RR ) )
4717, 45, 46sylanbrc 645 . . . . . . . 8  |-  ( ( x  e.  ( CC 
\  RR )  /\  ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) ) )  ->  y  e.  ( CC  \  RR ) )
4847ex 423 . . . . . . 7  |-  ( x  e.  ( CC  \  RR )  ->  ( ( y  e.  CC  /\  ( x ( abs 
o.  -  ) y
)  <  ( abs `  ( Im `  x
) ) )  -> 
y  e.  ( CC 
\  RR ) ) )
4916, 48sylbid 206 . . . . . 6  |-  ( x  e.  ( CC  \  RR )  ->  ( y  e.  ( x (
ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  ->  y  e.  ( CC  \  RR ) ) )
5049ssrdv 3185 . . . . 5  |-  ( x  e.  ( CC  \  RR )  ->  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )
51 oveq2 5866 . . . . . . 7  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( x
( ball `  ( abs  o. 
-  ) ) y )  =  ( x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) ) )
5251sseq1d 3205 . . . . . 6  |-  ( y  =  ( abs `  (
Im `  x )
)  ->  ( (
x ( ball `  ( abs  o.  -  ) ) y )  C_  ( CC  \  RR )  <->  ( x
( ball `  ( abs  o. 
-  ) ) ( abs `  ( Im
`  x ) ) )  C_  ( CC  \  RR ) ) )
5352rspcev 2884 . . . . 5  |-  ( ( ( abs `  (
Im `  x )
)  e.  RR+  /\  (
x ( ball `  ( abs  o.  -  ) ) ( abs `  (
Im `  x )
) )  C_  ( CC  \  RR ) )  ->  E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) )
5410, 50, 53syl2anc 642 . . . 4  |-  ( x  e.  ( CC  \  RR )  ->  E. y  e.  RR+  ( x (
ball `  ( abs  o. 
-  ) ) y )  C_  ( CC  \  RR ) )
5554rgen 2608 . . 3  |-  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR )
56 recld2.1 . . . . . 6  |-  J  =  ( TopOpen ` fld )
5756cnfldtopn 18291 . . . . 5  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
5857elmopn2 17991 . . . 4  |-  ( ( abs  o.  -  )  e.  ( * Met `  CC )  ->  ( ( CC 
\  RR )  e.  J  <->  ( ( CC 
\  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) ) )
5911, 58ax-mp 8 . . 3  |-  ( ( CC  \  RR )  e.  J  <->  ( ( CC  \  RR )  C_  CC  /\  A. x  e.  ( CC  \  RR ) E. y  e.  RR+  ( x ( ball `  ( abs  o.  -  ) ) y ) 
C_  ( CC  \  RR ) ) )
601, 55, 59mpbir2an 886 . 2  |-  ( CC 
\  RR )  e.  J
6156cnfldtop 18293 . . 3  |-  J  e. 
Top
62 ax-resscn 8794 . . 3  |-  RR  C_  CC
6357mopnuni 17987 . . . . 5  |-  ( ( abs  o.  -  )  e.  ( * Met `  CC )  ->  CC  =  U. J )
6411, 63ax-mp 8 . . . 4  |-  CC  =  U. J
6564iscld2 16765 . . 3  |-  ( ( J  e.  Top  /\  RR  C_  CC )  -> 
( RR  e.  (
Clsd `  J )  <->  ( CC  \  RR )  e.  J ) )
6661, 62, 65mp2an 653 . 2  |-  ( RR  e.  ( Clsd `  J
)  <->  ( CC  \  RR )  e.  J
)
6760, 66mpbir 200 1  |-  RR  e.  ( Clsd `  J )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149    C_ wss 3152   U.cuni 3827   class class class wbr 4023    o. ccom 4693   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   RR*cxr 8866    < clt 8867    <_ cle 8868    - cmin 9037   RR+crp 10354   Imcim 11583   abscabs 11719   TopOpenctopn 13326   * Metcxmt 16369   ballcbl 16371  ℂfldccnfld 16377   Topctop 16631   Clsdccld 16753
This theorem is referenced by:  zcld2  18321  rellycmp  18455  recmet  18745  ishl2  18787  logdmopn  19996
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-fz 10783  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-starv 13223  df-tset 13227  df-ple 13228  df-ds 13230  df-rest 13327  df-topn 13328  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-xms 17885  df-ms 17886
  Copyright terms: Public domain W3C validator