MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem3pr Unicode version

Theorem reclem3pr 8673
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem3pr  |-  ( A  e.  P.  ->  1P  C_  ( A  .P.  B
) )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem3pr
Dummy variables  z  w  v  u  f 
g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-1p 8606 . . . 4  |-  1P  =  { w  |  w  <Q  1Q }
21abeq2i 2390 . . 3  |-  ( w  e.  1P  <->  w  <Q  1Q )
3 ltrnq 8603 . . . . . . 7  |-  ( w 
<Q  1Q  <->  ( *Q `  1Q )  <Q  ( *Q
`  w ) )
4 mulcomnq 8577 . . . . . . . . 9  |-  ( ( *Q `  1Q )  .Q  1Q )  =  ( 1Q  .Q  ( *Q `  1Q ) )
5 1nq 8552 . . . . . . . . . 10  |-  1Q  e.  Q.
6 recclnq 8590 . . . . . . . . . 10  |-  ( 1Q  e.  Q.  ->  ( *Q `  1Q )  e. 
Q. )
7 mulidnq 8587 . . . . . . . . . 10  |-  ( ( *Q `  1Q )  e.  Q.  ->  (
( *Q `  1Q )  .Q  1Q )  =  ( *Q `  1Q ) )
85, 6, 7mp2b 9 . . . . . . . . 9  |-  ( ( *Q `  1Q )  .Q  1Q )  =  ( *Q `  1Q )
9 recidnq 8589 . . . . . . . . . 10  |-  ( 1Q  e.  Q.  ->  ( 1Q  .Q  ( *Q `  1Q ) )  =  1Q )
105, 9ax-mp 8 . . . . . . . . 9  |-  ( 1Q 
.Q  ( *Q `  1Q ) )  =  1Q
114, 8, 103eqtr3i 2311 . . . . . . . 8  |-  ( *Q
`  1Q )  =  1Q
1211breq1i 4030 . . . . . . 7  |-  ( ( *Q `  1Q ) 
<Q  ( *Q `  w
)  <->  1Q  <Q  ( *Q
`  w ) )
133, 12bitri 240 . . . . . 6  |-  ( w 
<Q  1Q  <->  1Q  <Q  ( *Q
`  w ) )
14 prlem936 8671 . . . . . 6  |-  ( ( A  e.  P.  /\  1Q  <Q  ( *Q `  w ) )  ->  E. v  e.  A  -.  ( v  .Q  ( *Q `  w ) )  e.  A )
1513, 14sylan2b 461 . . . . 5  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  ->  E. v  e.  A  -.  ( v  .Q  ( *Q `  w ) )  e.  A )
16 prnmax 8619 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  v  e.  A )  ->  E. z  e.  A  v  <Q  z )
1716ad2ant2r 727 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  E. z  e.  A  v  <Q  z )
18 elprnq 8615 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  P.  /\  v  e.  A )  ->  v  e.  Q. )
1918ad2ant2r 727 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  v  e.  Q. )
20193adant3 975 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  v  e.  Q. )
21 simp1r 980 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  w  <Q  1Q )
22 ltrelnq 8550 . . . . . . . . . . . . . . . 16  |-  <Q  C_  ( Q.  X.  Q. )
2322brel 4737 . . . . . . . . . . . . . . 15  |-  ( w 
<Q  1Q  ->  ( w  e.  Q.  /\  1Q  e.  Q. ) )
2423simpld 445 . . . . . . . . . . . . . 14  |-  ( w 
<Q  1Q  ->  w  e.  Q. )
2521, 24syl 15 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  w  e.  Q. )
26 simp3 957 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  v  <Q  z )
27 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  -.  (
v  .Q  ( *Q
`  w ) )  e.  A )
28 ltrnq 8603 . . . . . . . . . . . . . . . . . . 19  |-  ( v 
<Q  z  <->  ( *Q `  z )  <Q  ( *Q `  v ) )
29 fvex 5539 . . . . . . . . . . . . . . . . . . . 20  |-  ( *Q
`  z )  e. 
_V
30 fvex 5539 . . . . . . . . . . . . . . . . . . . 20  |-  ( *Q
`  v )  e. 
_V
31 ltmnq 8596 . . . . . . . . . . . . . . . . . . . 20  |-  ( u  e.  Q.  ->  (
x  <Q  y  <->  ( u  .Q  x )  <Q  (
u  .Q  y ) ) )
32 vex 2791 . . . . . . . . . . . . . . . . . . . 20  |-  w  e. 
_V
33 mulcomnq 8577 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  .Q  y )  =  ( y  .Q  x
)
3429, 30, 31, 32, 33caovord2 6032 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  Q.  ->  (
( *Q `  z
)  <Q  ( *Q `  v )  <->  ( ( *Q `  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w ) ) )
3528, 34syl5bb 248 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  Q.  ->  (
v  <Q  z  <->  ( ( *Q `  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w ) ) )
3635adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  <Q  z  <->  ( ( *Q `  z
)  .Q  w ) 
<Q  ( ( *Q `  v )  .Q  w
) ) )
3736biimpd 198 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( v  <Q  z  ->  ( ( *Q `  z )  .Q  w
)  <Q  ( ( *Q
`  v )  .Q  w ) ) )
38 mulcomnq 8577 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  .Q  ( *Q `  v ) )  =  ( ( *Q `  v )  .Q  v
)
39 recidnq 8589 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( v  e.  Q.  ->  (
v  .Q  ( *Q
`  v ) )  =  1Q )
4038, 39syl5eqr 2329 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  Q.  ->  (
( *Q `  v
)  .Q  v )  =  1Q )
41 recidnq 8589 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  e.  Q.  ->  (
w  .Q  ( *Q
`  w ) )  =  1Q )
4240, 41oveqan12d 5877 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( *Q
`  v )  .Q  v )  .Q  (
w  .Q  ( *Q
`  w ) ) )  =  ( 1Q 
.Q  1Q ) )
43 vex 2791 . . . . . . . . . . . . . . . . . . . . . 22  |-  v  e. 
_V
44 mulassnq 8583 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( x  .Q  y )  .Q  u )  =  ( x  .Q  (
y  .Q  u ) )
45 fvex 5539 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( *Q
`  w )  e. 
_V
4630, 43, 32, 33, 44, 45caov4 6051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( *Q `  v
)  .Q  v )  .Q  ( w  .Q  ( *Q `  w ) ) )  =  ( ( ( *Q `  v )  .Q  w
)  .Q  ( v  .Q  ( *Q `  w ) ) )
47 mulidnq 8587 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 1Q  e.  Q.  ->  ( 1Q  .Q  1Q )  =  1Q )
485, 47ax-mp 8 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 1Q 
.Q  1Q )  =  1Q
4942, 46, 483eqtr3g 2338 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q )
50 recclnq 8590 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  Q.  ->  ( *Q `  v )  e. 
Q. )
51 mulclnq 8571 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( *Q `  v
)  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  v )  .Q  w
)  e.  Q. )
5250, 51sylan 457 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  v )  .Q  w
)  e.  Q. )
53 recmulnq 8588 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( *Q `  v
)  .Q  w )  e.  Q.  ->  (
( *Q `  (
( *Q `  v
)  .Q  w ) )  =  ( v  .Q  ( *Q `  w ) )  <->  ( (
( *Q `  v
)  .Q  w )  .Q  ( v  .Q  ( *Q `  w
) ) )  =  1Q ) )
5452, 53syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  ( ( *Q `  v )  .Q  w
) )  =  ( v  .Q  ( *Q
`  w ) )  <-> 
( ( ( *Q
`  v )  .Q  w )  .Q  (
v  .Q  ( *Q
`  w ) ) )  =  1Q ) )
5549, 54mpbird 223 . . . . . . . . . . . . . . . . . . 19  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( *Q `  (
( *Q `  v
)  .Q  w ) )  =  ( v  .Q  ( *Q `  w ) ) )
5655eleq1d 2349 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  A  <->  ( v  .Q  ( *Q
`  w ) )  e.  A ) )
5756notbid 285 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( -.  ( *Q
`  ( ( *Q
`  v )  .Q  w ) )  e.  A  <->  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )
5857biimprd 214 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( -.  ( v  .Q  ( *Q `  w ) )  e.  A  ->  -.  ( *Q `  ( ( *Q
`  v )  .Q  w ) )  e.  A ) )
5937, 58anim12d 546 . . . . . . . . . . . . . . 15  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( v  <Q 
z  /\  -.  (
v  .Q  ( *Q
`  w ) )  e.  A )  -> 
( ( ( *Q
`  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w )  /\  -.  ( *Q
`  ( ( *Q
`  v )  .Q  w ) )  e.  A ) ) )
60 ovex 5883 . . . . . . . . . . . . . . . . 17  |-  ( ( *Q `  v )  .Q  w )  e. 
_V
61 breq2 4027 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( ( *Q `  z )  .Q  w
)  <Q  y  <->  ( ( *Q `  z )  .Q  w )  <Q  (
( *Q `  v
)  .Q  w ) ) )
62 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  ( *Q `  y )  =  ( *Q `  (
( *Q `  v
)  .Q  w ) ) )
6362eleq1d 2349 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( *Q `  y
)  e.  A  <->  ( *Q `  ( ( *Q `  v )  .Q  w
) )  e.  A
) )
6463notbid 285 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  ( -.  ( *Q `  y
)  e.  A  <->  -.  ( *Q `  ( ( *Q
`  v )  .Q  w ) )  e.  A ) )
6561, 64anbi12d 691 . . . . . . . . . . . . . . . . 17  |-  ( y  =  ( ( *Q
`  v )  .Q  w )  ->  (
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( ( ( *Q `  z )  .Q  w )  <Q 
( ( *Q `  v )  .Q  w
)  /\  -.  ( *Q `  ( ( *Q
`  v )  .Q  w ) )  e.  A ) ) )
6660, 65spcev 2875 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( *Q `  z )  .Q  w
)  <Q  ( ( *Q
`  v )  .Q  w )  /\  -.  ( *Q `  ( ( *Q `  v )  .Q  w ) )  e.  A )  ->  E. y ( ( ( *Q `  z )  .Q  w )  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) )
67 ovex 5883 . . . . . . . . . . . . . . . . 17  |-  ( ( *Q `  z )  .Q  w )  e. 
_V
68 breq1 4026 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
x  <Q  y  <->  ( ( *Q `  z )  .Q  w )  <Q  y
) )
6968anbi1d 685 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
)  <->  ( ( ( *Q `  z )  .Q  w )  <Q 
y  /\  -.  ( *Q `  y )  e.  A ) ) )
7069exbidv 1612 . . . . . . . . . . . . . . . . 17  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  <->  E. y
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  -.  ( *Q `  y )  e.  A
) ) )
71 reclempr.1 . . . . . . . . . . . . . . . . 17  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
7267, 70, 71elab2 2917 . . . . . . . . . . . . . . . 16  |-  ( ( ( *Q `  z
)  .Q  w )  e.  B  <->  E. y
( ( ( *Q
`  z )  .Q  w )  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
7366, 72sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ( *Q `  z )  .Q  w
)  <Q  ( ( *Q
`  v )  .Q  w )  /\  -.  ( *Q `  ( ( *Q `  v )  .Q  w ) )  e.  A )  -> 
( ( *Q `  z )  .Q  w
)  e.  B )
7459, 73syl6 29 . . . . . . . . . . . . . 14  |-  ( ( v  e.  Q.  /\  w  e.  Q. )  ->  ( ( v  <Q 
z  /\  -.  (
v  .Q  ( *Q
`  w ) )  e.  A )  -> 
( ( *Q `  z )  .Q  w
)  e.  B ) )
7574imp 418 . . . . . . . . . . . . 13  |-  ( ( ( v  e.  Q.  /\  w  e.  Q. )  /\  ( v  <Q  z  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  (
( *Q `  z
)  .Q  w )  e.  B )
7620, 25, 26, 27, 75syl22anc 1183 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  ( ( *Q `  z )  .Q  w )  e.  B
)
7722brel 4737 . . . . . . . . . . . . . . 15  |-  ( v 
<Q  z  ->  ( v  e.  Q.  /\  z  e.  Q. ) )
7877simprd 449 . . . . . . . . . . . . . 14  |-  ( v 
<Q  z  ->  z  e. 
Q. )
79783ad2ant3 978 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  z  e.  Q. )
80 mulcomnq 8577 . . . . . . . . . . . . . . 15  |-  ( w  .Q  1Q )  =  ( 1Q  .Q  w
)
81 mulidnq 8587 . . . . . . . . . . . . . . 15  |-  ( w  e.  Q.  ->  (
w  .Q  1Q )  =  w )
8280, 81syl5reqr 2330 . . . . . . . . . . . . . 14  |-  ( w  e.  Q.  ->  w  =  ( 1Q  .Q  w ) )
83 mulassnq 8583 . . . . . . . . . . . . . . 15  |-  ( ( z  .Q  ( *Q
`  z ) )  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) )
84 recidnq 8589 . . . . . . . . . . . . . . . 16  |-  ( z  e.  Q.  ->  (
z  .Q  ( *Q
`  z ) )  =  1Q )
8584oveq1d 5873 . . . . . . . . . . . . . . 15  |-  ( z  e.  Q.  ->  (
( z  .Q  ( *Q `  z ) )  .Q  w )  =  ( 1Q  .Q  w
) )
8683, 85syl5reqr 2330 . . . . . . . . . . . . . 14  |-  ( z  e.  Q.  ->  ( 1Q  .Q  w )  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
8782, 86sylan9eqr 2337 . . . . . . . . . . . . 13  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  w  =  ( z  .Q  ( ( *Q
`  z )  .Q  w ) ) )
8879, 25, 87syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  w  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) )
89 oveq2 5866 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
z  .Q  x )  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )
9089eqeq2d 2294 . . . . . . . . . . . . 13  |-  ( x  =  ( ( *Q
`  z )  .Q  w )  ->  (
w  =  ( z  .Q  x )  <->  w  =  ( z  .Q  (
( *Q `  z
)  .Q  w ) ) ) )
9190rspcev 2884 . . . . . . . . . . . 12  |-  ( ( ( ( *Q `  z )  .Q  w
)  e.  B  /\  w  =  ( z  .Q  ( ( *Q `  z )  .Q  w
) ) )  ->  E. x  e.  B  w  =  ( z  .Q  x ) )
9276, 88, 91syl2anc 642 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
)  /\  v  <Q  z )  ->  E. x  e.  B  w  =  ( z  .Q  x
) )
93923expia 1153 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  (
v  <Q  z  ->  E. x  e.  B  w  =  ( z  .Q  x
) ) )
9493reximdv 2654 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  ( E. z  e.  A  v  <Q  z  ->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x
) ) )
9571reclem2pr 8672 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  B  e.  P. )
96 df-mp 8608 . . . . . . . . . . . 12  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  { u  |  E. f  e.  y  E. g  e.  w  u  =  ( f  .Q  g ) } )
97 mulclnq 8571 . . . . . . . . . . . 12  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
9896, 97genpelv 8624 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x ) ) )
9995, 98mpdan 649 . . . . . . . . . 10  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x
) ) )
10099ad2antrr 706 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  (
w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x
) ) )
10194, 100sylibrd 225 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  ( E. z  e.  A  v  <Q  z  ->  w  e.  ( A  .P.  B
) ) )
10217, 101mpd 14 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  w  <Q  1Q )  /\  ( v  e.  A  /\  -.  ( v  .Q  ( *Q `  w
) )  e.  A
) )  ->  w  e.  ( A  .P.  B
) )
103102exp32 588 . . . . . 6  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  -> 
( v  e.  A  ->  ( -.  ( v  .Q  ( *Q `  w ) )  e.  A  ->  w  e.  ( A  .P.  B ) ) ) )
104103rexlimdv 2666 . . . . 5  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  -> 
( E. v  e.  A  -.  ( v  .Q  ( *Q `  w ) )  e.  A  ->  w  e.  ( A  .P.  B ) ) )
10515, 104mpd 14 . . . 4  |-  ( ( A  e.  P.  /\  w  <Q  1Q )  ->  w  e.  ( A  .P.  B ) )
106105ex 423 . . 3  |-  ( A  e.  P.  ->  (
w  <Q  1Q  ->  w  e.  ( A  .P.  B
) ) )
1072, 106syl5bi 208 . 2  |-  ( A  e.  P.  ->  (
w  e.  1P  ->  w  e.  ( A  .P.  B ) ) )
108107ssrdv 3185 1  |-  ( A  e.  P.  ->  1P  C_  ( A  .P.  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   E.wrex 2544    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   Q.cnq 8474   1Qc1q 8475    .Q cmq 8478   *Qcrq 8479    <Q cltq 8480   P.cnp 8481   1Pc1p 8482    .P. cmp 8484
This theorem is referenced by:  reclem4pr  8674
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-omul 6484  df-er 6660  df-ni 8496  df-pli 8497  df-mi 8498  df-lti 8499  df-plpq 8532  df-mpq 8533  df-ltpq 8534  df-enq 8535  df-nq 8536  df-erq 8537  df-plq 8538  df-mq 8539  df-1nq 8540  df-rq 8541  df-ltnq 8542  df-np 8605  df-1p 8606  df-mp 8608
  Copyright terms: Public domain W3C validator