MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reclem4pr Unicode version

Theorem reclem4pr 8690
Description: Lemma for Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 30-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
reclempr.1  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
Assertion
Ref Expression
reclem4pr  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reclem4pr
Dummy variables  z  w  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reclempr.1 . . . . . . 7  |-  B  =  { x  |  E. y ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A ) }
21reclem2pr 8688 . . . . . 6  |-  ( A  e.  P.  ->  B  e.  P. )
3 df-mp 8624 . . . . . . 7  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  { u  |  E. f  e.  y  E. g  e.  w  u  =  ( f  .Q  g ) } )
4 mulclnq 8587 . . . . . . 7  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
53, 4genpelv 8640 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x ) ) )
62, 5mpdan 649 . . . . 5  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  <->  E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x
) ) )
71abeq2i 2403 . . . . . . . . 9  |-  ( x  e.  B  <->  E. y
( x  <Q  y  /\  -.  ( *Q `  y )  e.  A
) )
8 ltrelnq 8566 . . . . . . . . . . . . . . 15  |-  <Q  C_  ( Q.  X.  Q. )
98brel 4753 . . . . . . . . . . . . . 14  |-  ( x 
<Q  y  ->  ( x  e.  Q.  /\  y  e.  Q. ) )
109simprd 449 . . . . . . . . . . . . 13  |-  ( x 
<Q  y  ->  y  e. 
Q. )
11 elprnq 8631 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  z  e.  Q. )
12 ltmnq 8612 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  Q.  ->  (
x  <Q  y  <->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
1311, 12syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  <->  ( z  .Q  x ) 
<Q  ( z  .Q  y
) ) )
1413biimpd 198 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( z  .Q  x
)  <Q  ( z  .Q  y ) ) )
1514adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( x  <Q  y  ->  ( z  .Q  x )  <Q  (
z  .Q  y ) ) )
16 recclnq 8606 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  Q.  ->  ( *Q `  y )  e. 
Q. )
17 prub 8634 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  ( *Q `  y )  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  z  <Q  ( *Q `  y ) ) )
1816, 17sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  z  <Q  ( *Q `  y ) ) )
19 ltmnq 8612 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  Q.  ->  (
z  <Q  ( *Q `  y )  <->  ( y  .Q  z )  <Q  (
y  .Q  ( *Q
`  y ) ) ) )
20 mulcomnq 8593 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  .Q  z )  =  ( z  .Q  y
)
2120a1i 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
y  .Q  z )  =  ( z  .Q  y ) )
22 recidnq 8605 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
2321, 22breq12d 4052 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  Q.  ->  (
( y  .Q  z
)  <Q  ( y  .Q  ( *Q `  y
) )  <->  ( z  .Q  y )  <Q  1Q ) )
2419, 23bitrd 244 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  Q.  ->  (
z  <Q  ( *Q `  y )  <->  ( z  .Q  y )  <Q  1Q ) )
2524adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( z  <Q 
( *Q `  y
)  <->  ( z  .Q  y )  <Q  1Q ) )
2618, 25sylibd 205 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( -.  ( *Q `  y )  e.  A  ->  ( z  .Q  y )  <Q  1Q ) )
2715, 26anim12d 546 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )  ->  (
( z  .Q  x
)  <Q  ( z  .Q  y )  /\  (
z  .Q  y ) 
<Q  1Q ) ) )
28 ltsonq 8609 . . . . . . . . . . . . . . . 16  |-  <Q  Or  Q.
2928, 8sotri 5086 . . . . . . . . . . . . . . 15  |-  ( ( ( z  .Q  x
)  <Q  ( z  .Q  y )  /\  (
z  .Q  y ) 
<Q  1Q )  ->  (
z  .Q  x ) 
<Q  1Q )
3027, 29syl6 29 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  z  e.  A )  /\  y  e.  Q. )  ->  ( ( x 
<Q  y  /\  -.  ( *Q `  y )  e.  A )  ->  (
z  .Q  x ) 
<Q  1Q ) )
3130exp4b 590 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( y  e.  Q.  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) ) )
3210, 31syl5 28 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) ) )
3332pm2.43d 44 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  <Q  y  ->  ( -.  ( *Q
`  y )  e.  A  ->  ( z  .Q  x )  <Q  1Q ) ) )
3433imp3a 420 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( ( x  <Q  y  /\  -.  ( *Q
`  y )  e.  A )  ->  (
z  .Q  x ) 
<Q  1Q ) )
3534exlimdv 1626 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( E. y ( x  <Q  y  /\  -.  ( *Q `  y
)  e.  A )  ->  ( z  .Q  x )  <Q  1Q ) )
367, 35syl5bi 208 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  e.  B  ->  ( z  .Q  x
)  <Q  1Q ) )
37 breq1 4042 . . . . . . . . 9  |-  ( w  =  ( z  .Q  x )  ->  (
w  <Q  1Q  <->  ( z  .Q  x )  <Q  1Q ) )
3837biimprcd 216 . . . . . . . 8  |-  ( ( z  .Q  x ) 
<Q  1Q  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) )
3936, 38syl6 29 . . . . . . 7  |-  ( ( A  e.  P.  /\  z  e.  A )  ->  ( x  e.  B  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) ) )
4039expimpd 586 . . . . . 6  |-  ( A  e.  P.  ->  (
( z  e.  A  /\  x  e.  B
)  ->  ( w  =  ( z  .Q  x )  ->  w  <Q  1Q ) ) )
4140rexlimdvv 2686 . . . . 5  |-  ( A  e.  P.  ->  ( E. z  e.  A  E. x  e.  B  w  =  ( z  .Q  x )  ->  w  <Q  1Q ) )
426, 41sylbid 206 . . . 4  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  ->  w  <Q  1Q ) )
43 df-1p 8622 . . . . 5  |-  1P  =  { w  |  w  <Q  1Q }
4443abeq2i 2403 . . . 4  |-  ( w  e.  1P  <->  w  <Q  1Q )
4542, 44syl6ibr 218 . . 3  |-  ( A  e.  P.  ->  (
w  e.  ( A  .P.  B )  ->  w  e.  1P )
)
4645ssrdv 3198 . 2  |-  ( A  e.  P.  ->  ( A  .P.  B )  C_  1P )
471reclem3pr 8689 . 2  |-  ( A  e.  P.  ->  1P  C_  ( A  .P.  B
) )
4846, 47eqssd 3209 1  |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Q.cnq 8490   1Qc1q 8491    .Q cmq 8494   *Qcrq 8495    <Q cltq 8496   P.cnp 8497   1Pc1p 8498    .P. cmp 8500
This theorem is referenced by:  recexpr  8691
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-omul 6500  df-er 6676  df-ni 8512  df-pli 8513  df-mi 8514  df-lti 8515  df-plpq 8548  df-mpq 8549  df-ltpq 8550  df-enq 8551  df-nq 8552  df-erq 8553  df-plq 8554  df-mq 8555  df-1nq 8556  df-rq 8557  df-ltnq 8558  df-np 8621  df-1p 8622  df-mp 8624
  Copyright terms: Public domain W3C validator