MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recseq Unicode version

Theorem recseq 6389
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )

Proof of Theorem recseq
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5524 . . . . . . . 8  |-  ( F  =  G  ->  ( F `  ( a  |`  c ) )  =  ( G `  (
a  |`  c ) ) )
21eqeq2d 2294 . . . . . . 7  |-  ( F  =  G  ->  (
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
32ralbidv 2563 . . . . . 6  |-  ( F  =  G  ->  ( A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
43anbi2d 684 . . . . 5  |-  ( F  =  G  ->  (
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <-> 
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
54rexbidv 2564 . . . 4  |-  ( F  =  G  ->  ( E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <->  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
65abbidv 2397 . . 3  |-  ( F  =  G  ->  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
76unieqd 3838 . 2  |-  ( F  =  G  ->  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
8 df-recs 6388 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
9 df-recs 6388 . 2  |- recs ( G )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
107, 8, 93eqtr4g 2340 1  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623   {cab 2269   A.wral 2543   E.wrex 2544   U.cuni 3827   Oncon0 4392    |` cres 4691    Fn wfn 5250   ` cfv 5255  recscrecs 6387
This theorem is referenced by:  rdgeq1  6424  rdgeq2  6425  dfoi  7226  oieq1  7227  oieq2  7228  ordtypecbv  7232  dfac12r  7772  zorn2g  8130  ttukey2g  8143  aomclem3  27153  aomclem8  27159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-recs 6388
  Copyright terms: Public domain W3C validator