MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recseq Unicode version

Theorem recseq 6601
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )

Proof of Theorem recseq
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5694 . . . . . . . 8  |-  ( F  =  G  ->  ( F `  ( a  |`  c ) )  =  ( G `  (
a  |`  c ) ) )
21eqeq2d 2423 . . . . . . 7  |-  ( F  =  G  ->  (
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
32ralbidv 2694 . . . . . 6  |-  ( F  =  G  ->  ( A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
43anbi2d 685 . . . . 5  |-  ( F  =  G  ->  (
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <-> 
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
54rexbidv 2695 . . . 4  |-  ( F  =  G  ->  ( E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <->  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
65abbidv 2526 . . 3  |-  ( F  =  G  ->  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
76unieqd 3994 . 2  |-  ( F  =  G  ->  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
8 df-recs 6600 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
9 df-recs 6600 . 2  |- recs ( G )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
107, 8, 93eqtr4g 2469 1  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649   {cab 2398   A.wral 2674   E.wrex 2675   U.cuni 3983   Oncon0 4549    |` cres 4847    Fn wfn 5416   ` cfv 5421  recscrecs 6599
This theorem is referenced by:  rdgeq1  6636  rdgeq2  6637  dfoi  7444  oieq1  7445  oieq2  7446  ordtypecbv  7450  dfac12r  7990  zorn2g  8347  ttukey2g  8360  aomclem3  27029  aomclem8  27035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-uni 3984  df-br 4181  df-iota 5385  df-fv 5429  df-recs 6600
  Copyright terms: Public domain W3C validator