MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recseq Structured version   Unicode version

Theorem recseq 6637
Description: Equality theorem for recs. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Assertion
Ref Expression
recseq  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )

Proof of Theorem recseq
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq1 5730 . . . . . . . 8  |-  ( F  =  G  ->  ( F `  ( a  |`  c ) )  =  ( G `  (
a  |`  c ) ) )
21eqeq2d 2449 . . . . . . 7  |-  ( F  =  G  ->  (
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
32ralbidv 2727 . . . . . 6  |-  ( F  =  G  ->  ( A. c  e.  b 
( a `  c
)  =  ( F `
 ( a  |`  c ) )  <->  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) )
43anbi2d 686 . . . . 5  |-  ( F  =  G  ->  (
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <-> 
( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
54rexbidv 2728 . . . 4  |-  ( F  =  G  ->  ( E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( F `
 ( a  |`  c ) ) )  <->  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c
)  =  ( G `
 ( a  |`  c ) ) ) ) )
65abbidv 2552 . . 3  |-  ( F  =  G  ->  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  { a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
76unieqd 4028 . 2  |-  ( F  =  G  ->  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) } )
8 df-recs 6636 . 2  |- recs ( F )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( F `  ( a  |`  c ) ) ) }
9 df-recs 6636 . 2  |- recs ( G )  =  U. {
a  |  E. b  e.  On  ( a  Fn  b  /\  A. c  e.  b  ( a `  c )  =  ( G `  ( a  |`  c ) ) ) }
107, 8, 93eqtr4g 2495 1  |-  ( F  =  G  -> recs ( F )  = recs ( G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653   {cab 2424   A.wral 2707   E.wrex 2708   U.cuni 4017   Oncon0 4584    |` cres 4883    Fn wfn 5452   ` cfv 5457  recscrecs 6635
This theorem is referenced by:  rdgeq1  6672  rdgeq2  6673  dfoi  7483  oieq1  7484  oieq2  7485  ordtypecbv  7489  dfac12r  8031  zorn2g  8388  ttukey2g  8401  aomclem3  27145  aomclem8  27150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465  df-recs 6636
  Copyright terms: Public domain W3C validator