MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  redivcl Unicode version

Theorem redivcl 9665
Description: Closure law for division of reals. (Contributed by NM, 27-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
redivcl  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  e.  RR )

Proof of Theorem redivcl
StepHypRef Expression
1 simp1 957 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  A  e.  RR )
21recnd 9047 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  A  e.  CC )
3 simp2 958 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  e.  RR )
43recnd 9047 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  e.  CC )
5 simp3 959 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  B  =/=  0 )
6 divrec 9626 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
72, 4, 5, 6syl3anc 1184 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
8 rereccl 9664 . . . 4  |-  ( ( B  e.  RR  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  RR )
983adant1 975 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  (
1  /  B )  e.  RR )
101, 9remulcld 9049 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  RR )
117, 10eqeltrd 2461 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B  =/=  0 )  ->  ( A  /  B )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2550  (class class class)co 6020   CCcc 8921   RRcr 8922   0cc0 8923   1c1 8924    x. cmul 8928    / cdiv 9609
This theorem is referenced by:  redivclzi  9712  redivcld  9774  lediv1  9807  lt2mul2div  9818  lemuldiv  9821  ledivdiv  9831  ltdiv23  9833  lediv23  9834  nndivre  9967  rehalfcl  10126  qre  10511  rpdivcl  10566  rerpdivcl  10571  quoremnn0ALT  11165  resin4p  12666  recos4p  12667  retancl  12670  sin01gt0  12718  cos01gt0  12719  divalgmod  12853  modgcd  12963  sineq0  20296  efif1olem2  20312  gxmodid  21715  rexdiv  24010  itg2addnclem2  25958  itg2addnc  25959  stoweidlem13  27430  stoweidlem34  27451  stoweid  27480  reseccl  27842  recsccl  27843  recotcl  27844  dp2cl  27858
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-op 3766  df-uni 3958  df-br 4154  df-opab 4208  df-mpt 4209  df-id 4439  df-po 4444  df-so 4445  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610
  Copyright terms: Public domain W3C validator