Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refref Unicode version

Theorem refref 26285
Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refref  |-  ( A  e.  V  ->  A Ref A )

Proof of Theorem refref
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2283 . . 3  |-  U. A  =  U. A
2 ssid 3197 . . . . 5  |-  x  C_  x
3 sseq2 3200 . . . . . 6  |-  ( y  =  x  ->  (
x  C_  y  <->  x  C_  x
) )
43rspcev 2884 . . . . 5  |-  ( ( x  e.  A  /\  x  C_  x )  ->  E. y  e.  A  x  C_  y )
52, 4mpan2 652 . . . 4  |-  ( x  e.  A  ->  E. y  e.  A  x  C_  y
)
65rgen 2608 . . 3  |-  A. x  e.  A  E. y  e.  A  x  C_  y
71, 6pm3.2i 441 . 2  |-  ( U. A  =  U. A  /\  A. x  e.  A  E. y  e.  A  x  C_  y )
81, 1isref 26279 . 2  |-  ( A  e.  V  ->  ( A Ref A  <->  ( U. A  =  U. A  /\  A. x  e.  A  E. y  e.  A  x  C_  y ) ) )
97, 8mpbiri 224 1  |-  ( A  e.  V  ->  A Ref A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   U.cuni 3827   class class class wbr 4023   Refcref 26260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-ref 26264
  Copyright terms: Public domain W3C validator