Mathbox for Jeff Hankins < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refrel Structured version   Unicode version

Theorem refrel 26360
 Description: Refinement is a relation. (Contributed by Jeff Hankins, 18-Jan-2010.)
Assertion
Ref Expression
refrel

Proof of Theorem refrel
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ref 26346 . 2
21relopabi 5002 1
 Colors of variables: wff set class Syntax hints:   wa 360   wceq 1653  wral 2707  wrex 2708   wss 3322  cuni 4017   wrel 4885  cref 26342 This theorem is referenced by:  isref  26361  refbas  26362  refssex  26363  reftr  26371  refssfne  26376 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-opab 4269  df-xp 4886  df-rel 4887  df-ref 26346
 Copyright terms: Public domain W3C validator