MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep Unicode version

Theorem regsep 17062
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regsep  |-  ( ( J  e.  Reg  /\  U  e.  J  /\  A  e.  U )  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) )
Distinct variable groups:    x, A    x, J    x, U

Proof of Theorem regsep
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 17060 . . . . 5  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. y  e.  J  A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  y ) ) )
21simprbi 450 . . . 4  |-  ( J  e.  Reg  ->  A. y  e.  J  A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  y ) )
3 sseq2 3200 . . . . . . . 8  |-  ( y  =  U  ->  (
( ( cls `  J
) `  x )  C_  y  <->  ( ( cls `  J ) `  x
)  C_  U )
)
43anbi2d 684 . . . . . . 7  |-  ( y  =  U  ->  (
( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
54rexbidv 2564 . . . . . 6  |-  ( y  =  U  ->  ( E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
65raleqbi1dv 2744 . . . . 5  |-  ( y  =  U  ->  ( A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  A. z  e.  U  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
76rspccv 2881 . . . 4  |-  ( A. y  e.  J  A. z  e.  y  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  ->  ( U  e.  J  ->  A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
82, 7syl 15 . . 3  |-  ( J  e.  Reg  ->  ( U  e.  J  ->  A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
9 eleq1 2343 . . . . . 6  |-  ( z  =  A  ->  (
z  e.  x  <->  A  e.  x ) )
109anbi1d 685 . . . . 5  |-  ( z  =  A  ->  (
( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  <->  ( A  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
1110rexbidv 2564 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  <->  E. x  e.  J  ( A  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
1211rspccv 2881 . . 3  |-  ( A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  ->  ( A  e.  U  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
138, 12syl6 29 . 2  |-  ( J  e.  Reg  ->  ( U  e.  J  ->  ( A  e.  U  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) ) )
14133imp 1145 1  |-  ( ( J  e.  Reg  /\  U  e.  J  /\  A  e.  U )  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   ` cfv 5255   Topctop 16631   clsccl 16755   Regcreg 17037
This theorem is referenced by:  regsep2  17104  regr1lem  17430  kqreglem1  17432  kqreglem2  17433  reghmph  17484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-reg 17044
  Copyright terms: Public domain W3C validator