MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  regsep Structured version   Unicode version

Theorem regsep 17390
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
regsep  |-  ( ( J  e.  Reg  /\  U  e.  J  /\  A  e.  U )  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) )
Distinct variable groups:    x, A    x, J    x, U

Proof of Theorem regsep
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 17388 . . . . 5  |-  ( J  e.  Reg  <->  ( J  e.  Top  /\  A. y  e.  J  A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  y ) ) )
21simprbi 451 . . . 4  |-  ( J  e.  Reg  ->  A. y  e.  J  A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  y ) )
3 sseq2 3362 . . . . . . . 8  |-  ( y  =  U  ->  (
( ( cls `  J
) `  x )  C_  y  <->  ( ( cls `  J ) `  x
)  C_  U )
)
43anbi2d 685 . . . . . . 7  |-  ( y  =  U  ->  (
( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
54rexbidv 2718 . . . . . 6  |-  ( y  =  U  ->  ( E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
65raleqbi1dv 2904 . . . . 5  |-  ( y  =  U  ->  ( A. z  e.  y  E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  <->  A. z  e.  U  E. x  e.  J  ( z  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
76rspccv 3041 . . . 4  |-  ( A. y  e.  J  A. z  e.  y  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  y )  ->  ( U  e.  J  ->  A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
82, 7syl 16 . . 3  |-  ( J  e.  Reg  ->  ( U  e.  J  ->  A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
9 eleq1 2495 . . . . . 6  |-  ( z  =  A  ->  (
z  e.  x  <->  A  e.  x ) )
109anbi1d 686 . . . . 5  |-  ( z  =  A  ->  (
( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  <->  ( A  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
1110rexbidv 2718 . . . 4  |-  ( z  =  A  ->  ( E. x  e.  J  ( z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  <->  E. x  e.  J  ( A  e.  x  /\  (
( cls `  J
) `  x )  C_  U ) ) )
1211rspccv 3041 . . 3  |-  ( A. z  e.  U  E. x  e.  J  (
z  e.  x  /\  ( ( cls `  J
) `  x )  C_  U )  ->  ( A  e.  U  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) )
138, 12syl6 31 . 2  |-  ( J  e.  Reg  ->  ( U  e.  J  ->  ( A  e.  U  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) ) ) )
14133imp 1147 1  |-  ( ( J  e.  Reg  /\  U  e.  J  /\  A  e.  U )  ->  E. x  e.  J  ( A  e.  x  /\  ( ( cls `  J
) `  x )  C_  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    C_ wss 3312   ` cfv 5446   Topctop 16950   clsccl 17074   Regcreg 17365
This theorem is referenced by:  regsep2  17432  regr1lem  17763  kqreglem1  17765  kqreglem2  17766  reghmph  17817  cnextcn  18090
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-reg 17372
  Copyright terms: Public domain W3C validator