Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  regtop Structured version   Unicode version

Theorem regtop 17399
 Description: A regular space is a topological space. (Contributed by Jeff Hankins, 1-Feb-2010.)
Assertion
Ref Expression
regtop

Proof of Theorem regtop
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isreg 17398 . 2
21simplbi 448 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wcel 1726  wral 2707  wrex 2708   wss 3322  cfv 5456  ctop 16960  ccl 17084  creg 17375 This theorem is referenced by:  regsep2  17442  regr1  17784  kqreg  17785  reghmph  17827 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-iota 5420  df-fv 5464  df-reg 17382
 Copyright terms: Public domain W3C validator