MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rei Structured version   Unicode version

Theorem rei 11954
Description: The real part of  _i. (Contributed by Scott Fenton, 9-Jun-2006.)
Assertion
Ref Expression
rei  |-  ( Re
`  _i )  =  0

Proof of Theorem rei
StepHypRef Expression
1 ax-icn 9042 . . . . 5  |-  _i  e.  CC
2 ax-1cn 9041 . . . . 5  |-  1  e.  CC
31, 2mulcli 9088 . . . 4  |-  ( _i  x.  1 )  e.  CC
43addid2i 9247 . . 3  |-  ( 0  +  ( _i  x.  1 ) )  =  ( _i  x.  1 )
54fveq2i 5724 . 2  |-  ( Re
`  ( 0  +  ( _i  x.  1 ) ) )  =  ( Re `  (
_i  x.  1 ) )
6 0re 9084 . . 3  |-  0  e.  RR
7 1re 9083 . . 3  |-  1  e.  RR
8 crre 11912 . . 3  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( Re `  (
0  +  ( _i  x.  1 ) ) )  =  0 )
96, 7, 8mp2an 654 . 2  |-  ( Re
`  ( 0  +  ( _i  x.  1 ) ) )  =  0
101mulid1i 9085 . . 3  |-  ( _i  x.  1 )  =  _i
1110fveq2i 5724 . 2  |-  ( Re
`  ( _i  x.  1 ) )  =  ( Re `  _i )
125, 9, 113eqtr3ri 2465 1  |-  ( Re
`  _i )  =  0
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. wcel 1725   ` cfv 5447  (class class class)co 6074   RRcr 8982   0cc0 8983   1c1 8984   _ici 8985    + caddc 8986    x. cmul 8988   Recre 11895
This theorem is referenced by:  cji  11957  igz  13295  atancj  20743  atanlogsublem  20748
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-po 4496  df-so 4497  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-riota 6542  df-er 6898  df-en 7103  df-dom 7104  df-sdom 7105  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-2 10051  df-cj 11897  df-re 11898
  Copyright terms: Public domain W3C validator