Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relbigcup Structured version   Unicode version

Theorem relbigcup 25744
 Description: The relationship is a relationship. (Contributed by Scott Fenton, 11-Apr-2012.)
Assertion
Ref Expression
relbigcup

Proof of Theorem relbigcup
StepHypRef Expression
1 relxp 4985 . . 3
2 reldif 4996 . . 3 (++)
31, 2ax-mp 8 . 2 (++)
4 df-bigcup 25704 . . 3 (++)
54releqi 4962 . 2 (++)
63, 5mpbir 202 1
 Colors of variables: wff set class Syntax hints:  cvv 2958   cdif 3319   cep 4494   cxp 4878   crn 4881   ccom 4884   wrel 4885  (++)csymdif 25664   ctxp 25676  cbigcup 25680 This theorem is referenced by:  brbigcup  25745  dfbigcup2  25746 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-opab 4269  df-xp 4886  df-rel 4887  df-bigcup 25704
 Copyright terms: Public domain W3C validator