Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relbrcnv Structured version   Unicode version

Theorem relbrcnv 5248
 Description: When is a relation, the sethood assumptions on brcnv 5058 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Hypothesis
Ref Expression
relbrcnv.1
Assertion
Ref Expression
relbrcnv

Proof of Theorem relbrcnv
StepHypRef Expression
1 relbrcnv.1 . 2
2 relbrcnvg 5246 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wb 178   class class class wbr 4215  ccnv 4880   wrel 4886 This theorem is referenced by:  compssiso  8259  ballotlemimin  24768  fneval  26381 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4216  df-opab 4270  df-xp 4887  df-rel 4888  df-cnv 4889
 Copyright terms: Public domain W3C validator