MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relcnvtr Unicode version

Theorem relcnvtr 5208
Description: A relation is transitive iff its converse is transitive. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
relcnvtr  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )

Proof of Theorem relcnvtr
StepHypRef Expression
1 cnvco 4881 . . 3  |-  `' ( R  o.  R )  =  ( `' R  o.  `' R )
2 cnvss 4870 . . 3  |-  ( ( R  o.  R ) 
C_  R  ->  `' ( R  o.  R
)  C_  `' R
)
31, 2syl5eqssr 3236 . 2  |-  ( ( R  o.  R ) 
C_  R  ->  ( `' R  o.  `' R )  C_  `' R )
4 cnvco 4881 . . . 4  |-  `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )
5 cnvss 4870 . . . 4  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  `' ( `' R  o.  `' R
)  C_  `' `' R )
6 sseq1 3212 . . . . 5  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  <->  ( `' `' R  o.  `' `' R )  C_  `' `' R ) )
7 dfrel2 5140 . . . . . . 7  |-  ( Rel 
R  <->  `' `' R  =  R
)
8 coeq1 4857 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  `' `' R ) )
9 coeq2 4858 . . . . . . . . . 10  |-  ( `' `' R  =  R  ->  ( R  o.  `' `' R )  =  ( R  o.  R ) )
108, 9eqtrd 2328 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  ( `' `' R  o.  `' `' R )  =  ( R  o.  R ) )
11 id 19 . . . . . . . . 9  |-  ( `' `' R  =  R  ->  `' `' R  =  R
)
1210, 11sseq12d 3220 . . . . . . . 8  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  <->  ( R  o.  R )  C_  R
) )
1312biimpd 198 . . . . . . 7  |-  ( `' `' R  =  R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
147, 13sylbi 187 . . . . . 6  |-  ( Rel 
R  ->  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( R  o.  R )  C_  R ) )
1514com12 27 . . . . 5  |-  ( ( `' `' R  o.  `' `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) )
166, 15syl6bi 219 . . . 4  |-  ( `' ( `' R  o.  `' R )  =  ( `' `' R  o.  `' `' R )  ->  ( `' ( `' R  o.  `' R )  C_  `' `' R  ->  ( Rel 
R  ->  ( R  o.  R )  C_  R
) ) )
174, 5, 16mpsyl 59 . . 3  |-  ( ( `' R  o.  `' R )  C_  `' R  ->  ( Rel  R  ->  ( R  o.  R
)  C_  R )
)
1817com12 27 . 2  |-  ( Rel 
R  ->  ( ( `' R  o.  `' R )  C_  `' R  ->  ( R  o.  R )  C_  R
) )
193, 18impbid2 195 1  |-  ( Rel 
R  ->  ( ( R  o.  R )  C_  R  <->  ( `' R  o.  `' R )  C_  `' R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    C_ wss 3165   `'ccnv 4704    o. ccom 4709   Rel wrel 4710
This theorem is referenced by:  dupre1  25346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714
  Copyright terms: Public domain W3C validator