Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relded Unicode version

Theorem relded 25740
Description: A deductive system is a relation. (Contributed by FL, 28-Oct-2007.)
Assertion
Ref Expression
relded  |-  Rel  Ded

Proof of Theorem relded
StepHypRef Expression
1 strded 25739 . . 3  |-  Ded  C_  (
( _V  X.  _V )  X.  ( _V  X.  _V ) )
2 xpss 4793 . . 3  |-  ( ( _V  X.  _V )  X.  ( _V  X.  _V ) )  C_  ( _V  X.  _V )
31, 2sstri 3188 . 2  |-  Ded  C_  ( _V  X.  _V )
4 df-rel 4696 . 2  |-  ( Rel 
Ded 
<->  Ded  C_  ( _V  X.  _V ) )
53, 4mpbir 200 1  |-  Rel  Ded
Colors of variables: wff set class
Syntax hints:   _Vcvv 2788    C_ wss 3152    X. cxp 4687   Rel wrel 4694   Dedcded 25734
This theorem is referenced by:  dedalg  25743
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696  df-ded 25735
  Copyright terms: Public domain W3C validator