Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldif Structured version   Unicode version

Theorem reldif 4986
 Description: A difference cutting down a relation is a relation. (Contributed by NM, 31-Mar-1998.)
Assertion
Ref Expression
reldif

Proof of Theorem reldif
StepHypRef Expression
1 difss 3466 . 2
2 relss 4955 . 2
31, 2ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wi 4   cdif 3309   wss 3312   wrel 4875 This theorem is referenced by:  difopab  4998  relsdom  7108  fundmpss  25382  relbigcup  25734 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-dif 3315  df-in 3319  df-ss 3326  df-rel 4877
 Copyright terms: Public domain W3C validator