Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldisj Structured version   Unicode version

Theorem reldisj 3663
 Description: Two ways of saying that two classes are disjoint, using the complement of relative to a universe . (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj

Proof of Theorem reldisj
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfss2 3329 . . . 4
2 pm5.44 878 . . . . . 6
3 eldif 3322 . . . . . . 7
43imbi2i 304 . . . . . 6
52, 4syl6bbr 255 . . . . 5
65sps 1770 . . . 4
71, 6sylbi 188 . . 3
87albidv 1635 . 2
9 disj1 3662 . 2
10 dfss2 3329 . 2
118, 9, 103bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1549   wceq 1652   wcel 1725   cdif 3309   cin 3311   wss 3312  c0 3620 This theorem is referenced by:  disj2  3667  oacomf1olem  6799  domdifsn  7183  elfiun  7427  cantnfp1lem3  7628  ssxr  9137  structcnvcnv  13472  fidomndrng  16359  elcls  17129  ist1-2  17403  nrmsep2  17412  nrmsep  17413  isnrm3  17415  isreg2  17433  hauscmplem  17461  connsub  17476  iunconlem  17482  llycmpkgen2  17574  hausdiag  17669  trfil3  17912  isufil2  17932  filufint  17944  blcld  18527  i1fima2  19563  i1fd  19565  usgrares1  21416  itg2addnclem2  26247 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950  df-dif 3315  df-in 3319  df-ss 3326  df-nul 3621
 Copyright terms: Public domain W3C validator