MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldm Unicode version

Theorem reldm 6187
Description: An expression for the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
reldm  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Distinct variable group:    x, A

Proof of Theorem reldm
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 releldm2 6186 . . 3  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
2 fvex 5555 . . . . . 6  |-  ( 1st `  x )  e.  _V
3 eqid 2296 . . . . . 6  |-  ( x  e.  A  |->  ( 1st `  x ) )  =  ( x  e.  A  |->  ( 1st `  x
) )
42, 3fnmpti 5388 . . . . 5  |-  ( x  e.  A  |->  ( 1st `  x ) )  Fn  A
5 fvelrnb 5586 . . . . 5  |-  ( ( x  e.  A  |->  ( 1st `  x ) )  Fn  A  -> 
( y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y ) )
64, 5ax-mp 8 . . . 4  |-  ( y  e.  ran  ( x  e.  A  |->  ( 1st `  x ) )  <->  E. z  e.  A  ( (
x  e.  A  |->  ( 1st `  x ) ) `  z )  =  y )
7 fveq2 5541 . . . . . . . 8  |-  ( x  =  z  ->  ( 1st `  x )  =  ( 1st `  z
) )
8 fvex 5555 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
97, 3, 8fvmpt 5618 . . . . . . 7  |-  ( z  e.  A  ->  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  ( 1st `  z ) )
109eqeq1d 2304 . . . . . 6  |-  ( z  e.  A  ->  (
( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  ( 1st `  z )  =  y ) )
1110rexbiia 2589 . . . . 5  |-  ( E. z  e.  A  ( ( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y )
1211a1i 10 . . . 4  |-  ( Rel 
A  ->  ( E. z  e.  A  (
( x  e.  A  |->  ( 1st `  x
) ) `  z
)  =  y  <->  E. z  e.  A  ( 1st `  z )  =  y ) )
136, 12syl5rbb 249 . . 3  |-  ( Rel 
A  ->  ( E. z  e.  A  ( 1st `  z )  =  y  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
141, 13bitrd 244 . 2  |-  ( Rel 
A  ->  ( y  e.  dom  A  <->  y  e.  ran  ( x  e.  A  |->  ( 1st `  x
) ) ) )
1514eqrdv 2294 1  |-  ( Rel 
A  ->  dom  A  =  ran  ( x  e.  A  |->  ( 1st `  x
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   E.wrex 2557    e. cmpt 4093   dom cdm 4705   ran crn 4706   Rel wrel 4710    Fn wfn 5266   ` cfv 5271   1stc1st 6136
This theorem is referenced by:  fidomdm  7154  dmct  23357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-fv 5279  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator