Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmdsmm Structured version   Unicode version

Theorem reldmdsmm 27176
Description: The direct sum is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.)
Assertion
Ref Expression
reldmdsmm  |-  Rel  dom  (+)m

Proof of Theorem reldmdsmm
Dummy variables  s 
r  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dsmm 27175 . 2  |-  (+)m  =  ( s  e.  _V , 
r  e.  _V  |->  ( ( s X_s r )s  { f  e.  X_ x  e.  dom  r (
Base `  ( r `  x ) )  |  { x  e.  dom  r  |  ( f `  x )  =/=  ( 0g `  ( r `  x ) ) }  e.  Fin } ) )
21reldmmpt2 6181 1  |-  Rel  dom  (+)m
Colors of variables: wff set class
Syntax hints:    e. wcel 1725    =/= wne 2599   {crab 2709   _Vcvv 2956   dom cdm 4878   Rel wrel 4883   ` cfv 5454  (class class class)co 6081   X_cixp 7063   Fincfn 7109   Basecbs 13469   ↾s cress 13470   X_scprds 13669   0gc0g 13723    (+)m cdsmm 27174
This theorem is referenced by:  dsmmval  27177  dsmmval2  27179
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-dm 4888  df-oprab 6085  df-mpt2 6086  df-dsmm 27175
  Copyright terms: Public domain W3C validator