Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmghm Structured version   Unicode version

Theorem reldmghm 15005
 Description: Lemma for group homomorphisms. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
reldmghm

Proof of Theorem reldmghm
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ghm 15004 . 2
21reldmmpt2 6181 1
 Colors of variables: wff set class Syntax hints:   wa 359   wceq 1652  cab 2422  wral 2705  wsbc 3161   cdm 4878   wrel 4883  wf 5450  cfv 5454  (class class class)co 6081  cbs 13469   cplusg 13529  cgrp 14685   cghm 15003 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-dm 4888  df-oprab 6085  df-mpt2 6086  df-ghm 15004
 Copyright terms: Public domain W3C validator