Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmdeg Structured version   Unicode version

Theorem reldmmdeg 19972
 Description: Multivariate degree is a binary operation. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Assertion
Ref Expression
reldmmdeg mDeg

Proof of Theorem reldmmdeg
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mdeg 19970 . 2 mDeg mPoly fld g
21reldmmpt2 6173 1 mDeg
 Colors of variables: wff set class Syntax hints:  cvv 2948   cdif 3309  csn 3806   cmpt 4258  ccnv 4869   cdm 4870   crn 4871  cima 4873   wrel 4875  cfv 5446  (class class class)co 6073  csup 7437  cxr 9111   clt 9112  cbs 13461  c0g 13715   g cgsu 13716   mPoly cmpl 16400  ℂfldccnfld 16695   mDeg cmdg 19968 This theorem is referenced by:  mdegfval  19977  deg1fval  19995 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-dm 4880  df-oprab 6077  df-mpt2 6078  df-mdeg 19970
 Copyright terms: Public domain W3C validator