MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmmpt2 Unicode version

Theorem reldmmpt2 6148
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
reldmmpt2  |-  Rel  dom  F
Distinct variable groups:    y, A    x, y
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem reldmmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 reldmoprab 6125 . 2  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
2 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
3 df-mpt2 6053 . . . . 5  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
42, 3eqtri 2432 . . . 4  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
54dmeqi 5038 . . 3  |-  dom  F  =  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
65releqi 4927 . 2  |-  ( Rel 
dom  F  <->  Rel  dom  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) } )
71, 6mpbir 201 1  |-  Rel  dom  F
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1721   dom cdm 4845   Rel wrel 4850   {coprab 6049    e. cmpt2 6050
This theorem is referenced by:  bropopvvv  6393  reldmmap  6994  reldmsets  13454  reldmress  13478  reldmprds  13635  gsum0  14743  reldmghm  14968  oppglsm  15239  reldmdprd  15521  reldmlmhm  16064  reldmpsr  16391  reldmmpl  16454  reldmopsr  16497  vr1val  16553  zrhval  16752  qtopres  17691  fgabs  17872  reldmtng  18640  reldmnghm  18707  reldmnmhm  18708  dvbsss  19750  reldmevls  19899  evl1fval  19908  reldmmdeg  19941  mzpmfp  26702  reldmdsmm  27075  frlmrcl  27101  mdetfval  27363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pr 4371
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-br 4181  df-opab 4235  df-xp 4851  df-rel 4852  df-dm 4855  df-oprab 6052  df-mpt2 6053
  Copyright terms: Public domain W3C validator