Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmoprab Structured version   Unicode version

Theorem reldmoprab 6150
 Description: The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
reldmoprab
Distinct variable group:   ,,
Allowed substitution hints:   (,,)

Proof of Theorem reldmoprab
StepHypRef Expression
1 dmoprab 6146 . 2
21relopabi 4992 1
 Colors of variables: wff set class Syntax hints:  wex 1550   cdm 4870   wrel 4875  coprab 6074 This theorem is referenced by:  oprabss  6151  reldmmpt2  6173  tposoprab  6507 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-dm 4880  df-oprab 6077
 Copyright terms: Public domain W3C validator