MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldmsets Unicode version

Theorem reldmsets 13170
Description: The structure override operator is a proper operator. (Contributed by Stefan O'Rear, 29-Jan-2015.)
Assertion
Ref Expression
reldmsets  |-  Rel  dom sSet

Proof of Theorem reldmsets
Dummy variables  e 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sets 13154 . 2  |- sSet  =  ( s  e.  _V , 
e  e.  _V  |->  ( ( s  |`  ( _V  \  dom  { e } ) )  u. 
{ e } ) )
21reldmmpt2 5955 1  |-  Rel  dom sSet
Colors of variables: wff set class
Syntax hints:   _Vcvv 2788    \ cdif 3149    u. cun 3150   {csn 3640   dom cdm 4689    |` cres 4691   Rel wrel 4694   sSet csts 13146
This theorem is referenced by:  setsnid  13188  oduval  14234  oduleval  14235  oppgval  14820  oppgplusfval  14821  mgpval  15328  opprval  15406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-rel 4696  df-dm 4699  df-oprab 5862  df-mpt2 5863  df-sets 13154
  Copyright terms: Public domain W3C validator