MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldv Unicode version

Theorem reldv 19236
Description: The derivative function is a relation. (Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Mario Carneiro, 24-Dec-2016.)
Assertion
Ref Expression
reldv  |-  Rel  ( S  _D  F )

Proof of Theorem reldv
Dummy variables  f 
s  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4810 . . . . . . . 8  |-  Rel  ( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )
21rgenw 2623 . . . . . . 7  |-  A. x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f ) Rel  ( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )
3 reliun 4822 . . . . . . 7  |-  ( Rel  U_ x  e.  (
( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  <->  A. x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f ) Rel  ( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
42, 3mpbir 200 . . . . . 6  |-  Rel  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )
5 df-rel 4712 . . . . . 6  |-  ( Rel  U_ x  e.  (
( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  <->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  C_  ( _V  X.  _V ) )
64, 5mpbi 199 . . . . 5  |-  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  C_  ( _V  X.  _V )
76rgenw 2623 . . . 4  |-  A. f  e.  ( CC  ^pm  s
) U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  C_  ( _V  X.  _V )
87rgenw 2623 . . 3  |-  A. s  e.  ~P  CC A. f  e.  ( CC  ^pm  s
) U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) )  C_  ( _V  X.  _V )
9 df-dv 19233 . . . 4  |-  _D  =  ( s  e.  ~P CC ,  f  e.  ( CC  ^pm  s ) 
|->  U_ x  e.  ( ( int `  (
( TopOpen ` fld )t  s ) ) `
 dom  f )
( { x }  X.  ( ( z  e.  ( dom  f  \  { x } ) 
|->  ( ( ( f `
 z )  -  ( f `  x
) )  /  (
z  -  x ) ) ) lim CC  x
) ) )
109ovmptss 6216 . . 3  |-  ( A. s  e.  ~P  CC A. f  e.  ( CC 
^pm  s ) U_ x  e.  ( ( int `  ( ( TopOpen ` fld )t  s
) ) `  dom  f ) ( { x }  X.  (
( z  e.  ( dom  f  \  {
x } )  |->  ( ( ( f `  z )  -  (
f `  x )
)  /  ( z  -  x ) ) ) lim CC  x ) )  C_  ( _V  X.  _V )  ->  ( S  _D  F )  C_  ( _V  X.  _V )
)
118, 10ax-mp 8 . 2  |-  ( S  _D  F )  C_  ( _V  X.  _V )
12 df-rel 4712 . 2  |-  ( Rel  ( S  _D  F
)  <->  ( S  _D  F )  C_  ( _V  X.  _V ) )
1311, 12mpbir 200 1  |-  Rel  ( S  _D  F )
Colors of variables: wff set class
Syntax hints:   A.wral 2556   _Vcvv 2801    \ cdif 3162    C_ wss 3165   ~Pcpw 3638   {csn 3653   U_ciun 3921    e. cmpt 4093    X. cxp 4703   dom cdm 4705   Rel wrel 4710   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751    - cmin 9053    / cdiv 9439   ↾t crest 13341   TopOpenctopn 13342  ℂfldccnfld 16393   intcnt 16770   lim CC climc 19228    _D cdv 19229
This theorem is referenced by:  perfdvf  19269  dvres  19277  dvres3  19279  dvres3a  19280  dvidlem  19281  dvmulbr  19304  dvaddf  19307  dvmulf  19308  dvcobr  19311  dvcof  19313  dvcnv  19340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-dv 19233
  Copyright terms: Public domain W3C validator