MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releldm2 Unicode version

Theorem releldm2 6186
Description: Two ways of expressing membership in the domain of a relation. (Contributed by NM, 22-Sep-2013.)
Assertion
Ref Expression
releldm2  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem releldm2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elex 2809 . . 3  |-  ( B  e.  dom  A  ->  B  e.  _V )
21anim2i 552 . 2  |-  ( ( Rel  A  /\  B  e.  dom  A )  -> 
( Rel  A  /\  B  e.  _V )
)
3 id 19 . . . . 5  |-  ( ( 1st `  x )  =  B  ->  ( 1st `  x )  =  B )
4 fvex 5555 . . . . 5  |-  ( 1st `  x )  e.  _V
53, 4syl6eqelr 2385 . . . 4  |-  ( ( 1st `  x )  =  B  ->  B  e.  _V )
65rexlimivw 2676 . . 3  |-  ( E. x  e.  A  ( 1st `  x )  =  B  ->  B  e.  _V )
76anim2i 552 . 2  |-  ( ( Rel  A  /\  E. x  e.  A  ( 1st `  x )  =  B )  ->  ( Rel  A  /\  B  e. 
_V ) )
8 eldm2g 4891 . . . 4  |-  ( B  e.  _V  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
98adantl 452 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. y <. B ,  y >.  e.  A ) )
10 df-rel 4712 . . . . . . . . 9  |-  ( Rel 
A  <->  A  C_  ( _V 
X.  _V ) )
11 ssel 3187 . . . . . . . . 9  |-  ( A 
C_  ( _V  X.  _V )  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1210, 11sylbi 187 . . . . . . . 8  |-  ( Rel 
A  ->  ( x  e.  A  ->  x  e.  ( _V  X.  _V ) ) )
1312imp 418 . . . . . . 7  |-  ( ( Rel  A  /\  x  e.  A )  ->  x  e.  ( _V  X.  _V ) )
14 op1steq 6180 . . . . . . 7  |-  ( x  e.  ( _V  X.  _V )  ->  ( ( 1st `  x )  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1513, 14syl 15 . . . . . 6  |-  ( ( Rel  A  /\  x  e.  A )  ->  (
( 1st `  x
)  =  B  <->  E. y  x  =  <. B , 
y >. ) )
1615rexbidva 2573 . . . . 5  |-  ( Rel 
A  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B ,  y >.
) )
1716adantr 451 . . . 4  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. x  e.  A  E. y  x  =  <. B , 
y >. ) )
18 rexcom4 2820 . . . . 5  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
19 risset 2603 . . . . . 6  |-  ( <. B ,  y >.  e.  A  <->  E. x  e.  A  x  =  <. B , 
y >. )
2019exbii 1572 . . . . 5  |-  ( E. y <. B ,  y
>.  e.  A  <->  E. y E. x  e.  A  x  =  <. B , 
y >. )
2118, 20bitr4i 243 . . . 4  |-  ( E. x  e.  A  E. y  x  =  <. B ,  y >.  <->  E. y <. B ,  y >.  e.  A )
2217, 21syl6bb 252 . . 3  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( E. x  e.  A  ( 1st `  x )  =  B  <->  E. y <. B ,  y >.  e.  A ) )
239, 22bitr4d 247 . 2  |-  ( ( Rel  A  /\  B  e.  _V )  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
242, 7, 23pm5.21nd 868 1  |-  ( Rel 
A  ->  ( B  e.  dom  A  <->  E. x  e.  A  ( 1st `  x )  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   E.wrex 2557   _Vcvv 2801    C_ wss 3165   <.cop 3656    X. cxp 4703   dom cdm 4705   Rel wrel 4710   ` cfv 5271   1stc1st 6136
This theorem is referenced by:  reldm  6187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fv 5279  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator