MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrni Structured version   Unicode version

Theorem relelrni 5108
Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 28-Apr-2015.)
Hypothesis
Ref Expression
releldm.1  |-  Rel  R
Assertion
Ref Expression
relelrni  |-  ( A R B  ->  B  e.  ran  R )

Proof of Theorem relelrni
StepHypRef Expression
1 releldm.1 . 2  |-  Rel  R
2 relelrn 5104 . 2  |-  ( ( Rel  R  /\  A R B )  ->  B  e.  ran  R )
31, 2mpan 653 1  |-  ( A R B  ->  B  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1726   class class class wbr 4213   ran crn 4880   Rel wrel 4884
This theorem is referenced by:  fpwwe2lem12  8517  lern  14671
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-sep 4331  ax-nul 4339  ax-pr 4404
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-br 4214  df-opab 4268  df-xp 4885  df-rel 4886  df-cnv 4887  df-dm 4889  df-rn 4890
  Copyright terms: Public domain W3C validator