Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Unicode version

Theorem releq 4962
 Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3371 . 2
2 df-rel 4888 . 2
3 df-rel 4888 . 2
41, 2, 33bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wceq 1653  cvv 2958   wss 3322   cxp 4879   wrel 4886 This theorem is referenced by:  releqi  4963  releqd  4964  dfrel2  5324  tposfn2  6504  ereq1  6915  isps  14639  isdir  14682  relexprel  25139  frrlem6  25596  prtlem12  26730  bnj1321  29470 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-in 3329  df-ss 3336  df-rel 4888
 Copyright terms: Public domain W3C validator