Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0 Unicode version

Theorem relexp0 24429
Description: A relation composed zero times is the (restricted) identity. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
relexp0.1  |-  ( ph  ->  Rel  R )
relexp0.2  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
relexp0  |-  ( ph  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R
) )

Proof of Theorem relexp0
Dummy variables  r  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexp0.2 . 2  |-  ( ph  ->  R  e.  _V )
2 uniexg 4599 . . 3  |-  ( R  e.  _V  ->  U. R  e.  _V )
3 uniexg 4599 . . . 4  |-  ( U. R  e.  _V  ->  U.
U. R  e.  _V )
4 resiexg 5079 . . . . 5  |-  ( U. U. R  e.  _V  ->  (  _I  |`  U. U. R
)  e.  _V )
5 eqidd 2359 . . . . . . 7  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  (
r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  =  ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) )
6 simpl 443 . . . . . . . . 9  |-  ( ( r  =  R  /\  n  =  0 )  ->  r  =  R )
76adantl 452 . . . . . . . 8  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  (
r  =  R  /\  n  =  0 ) )  ->  r  =  R )
8 simprr 733 . . . . . . . . . . 11  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  n  =  0 ) )  ->  n  = 
0 )
9 0z 10127 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
10 eqidd 2359 . . . . . . . . . . . . . . 15  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) )  ->  ( z  e.  _V  |->  (  _I  |`  U. U. R ) )  =  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) )
11 eqidd 2359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( R  =  R  /\  0  =  0 ) )  /\  z  =  0 )  ->  (  _I  |`  U. U. R )  =  (  _I  |`  U. U. R
) )
12 c0ex 8922 . . . . . . . . . . . . . . . 16  |-  0  e.  _V
1312a1i 10 . . . . . . . . . . . . . . 15  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) )  ->  0  e.  _V )
14 simpll 730 . . . . . . . . . . . . . . 15  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) )  ->  (  _I  |` 
U. U. R )  e. 
_V )
1510, 11, 13, 14fvmptd 5689 . . . . . . . . . . . . . 14  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) )  ->  ( (
z  e.  _V  |->  (  _I  |`  U. U. R
) ) `  0
)  =  (  _I  |`  U. U. R ) )
169, 15seq1i 11152 . . . . . . . . . . . . 13  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 0 )  =  (  _I  |`  U. U. R ) )
1716a1i 10 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( R  =  R  /\  0  =  0 ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) ` 
0 )  =  (  _I  |`  U. U. R
) ) )
18 eqeq1 2364 . . . . . . . . . . . . . 14  |-  ( n  =  0  ->  (
n  =  0  <->  0  =  0 ) )
1918anbi2d 684 . . . . . . . . . . . . 13  |-  ( n  =  0  ->  (
( R  =  R  /\  n  =  0 )  <->  ( R  =  R  /\  0  =  0 ) ) )
2019anbi2d 684 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( R  =  R  /\  n  =  0 ) )  <->  ( (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  0  =  0 ) ) ) )
21 fveq2 5608 . . . . . . . . . . . . 13  |-  ( n  =  0  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) ` 
0 ) )
2221eqeq1d 2366 . . . . . . . . . . . 12  |-  ( n  =  0  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n )  =  (  _I  |`  U. U. R
)  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 0 )  =  (  _I  |`  U. U. R ) ) )
2317, 20, 223imtr4d 259 . . . . . . . . . . 11  |-  ( n  =  0  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( R  =  R  /\  n  =  0 ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n )  =  (  _I  |`  U. U. R
) ) )
248, 23mpcom 32 . . . . . . . . . 10  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  n  =  0 ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  _I  |`  U. U. R ) )
2524a1i 10 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( R  =  R  /\  n  =  0 ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n )  =  (  _I  |`  U. U. R
) ) )
26 eqeq1 2364 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
r  =  R  <->  R  =  R ) )
2726anbi1d 685 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( r  =  R  /\  n  =  0 )  <->  ( R  =  R  /\  n  =  0 ) ) )
2827anbi2d 684 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( r  =  R  /\  n  =  0 ) )  <->  ( (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  ( R  =  R  /\  n  =  0 ) ) ) )
29 eqidd 2359 . . . . . . . . . . . 12  |-  ( r  =  R  ->  0  =  0 )
30 eqidd 2359 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  _V  =  _V )
31 coeq2 4924 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (
x  o.  r )  =  ( x  o.  R ) )
3230, 30, 31mpt2eq123dv 5997 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) )  =  ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) )
33 unieq 3917 . . . . . . . . . . . . . . 15  |-  ( r  =  R  ->  U. r  =  U. R )
3433unieqd 3919 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  U. U. r  =  U. U. R
)
3534reseq2d 5037 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  (  _I  |`  U. U. r
)  =  (  _I  |`  U. U. R ) )
3635mpteq2dv 4188 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
z  e.  _V  |->  (  _I  |`  U. U. r
) )  =  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) )
3729, 32, 36seqeq123d 11147 . . . . . . . . . . 11  |-  ( r  =  R  ->  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) )  =  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) )
3837fveq1d 5610 . . . . . . . . . 10  |-  ( r  =  R  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n ) )
3938eqeq1d 2366 . . . . . . . . 9  |-  ( r  =  R  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  _I  |`  U. U. R
)  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  _I  |`  U. U. R ) ) )
4025, 28, 393imtr4d 259 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( (  _I  |`  U. U. R )  e.  _V  /\  ph )  /\  ( r  =  R  /\  n  =  0 ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  _I  |`  U. U. R
) ) )
417, 40mpcom 32 . . . . . . 7  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  /\  (
r  =  R  /\  n  =  0 ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  _I  |`  U. U. R ) )
421adantl 452 . . . . . . 7  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  R  e.  _V )
43 0nn0 10072 . . . . . . . 8  |-  0  e.  NN0
4443a1i 10 . . . . . . 7  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  0  e.  NN0 )
45 simpl 443 . . . . . . 7  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  (  _I  |`  U. U. R
)  e.  _V )
465, 41, 42, 44, 45ovmpt2d 6062 . . . . . 6  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) 0 )  =  (  _I  |`  U. U. R
) )
47 df-relexp 24428 . . . . . . 7  |-  ^ r  =  ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )
48 oveq 5951 . . . . . . . . 9  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( R ^
r 0 )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) 0 ) )
4948eqeq1d 2366 . . . . . . . 8  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( R ^ r 0 )  =  (  _I  |`  U. U. R )  <->  ( R
( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) ) 0 )  =  (  _I  |`  U. U. R ) ) )
5049imbi2d 307 . . . . . . 7  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )  <->  ( (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) 0 )  =  (  _I  |`  U. U. R
) ) ) )
5147, 50ax-mp 8 . . . . . 6  |-  ( ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )  <->  ( (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) 0 )  =  (  _I  |`  U. U. R
) ) )
5246, 51mpbir 200 . . . . 5  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )
534, 52sylan 457 . . . 4  |-  ( ( U. U. R  e. 
_V  /\  ph )  -> 
( R ^ r 0 )  =  (  _I  |`  U. U. R
) )
543, 53sylan 457 . . 3  |-  ( ( U. R  e.  _V  /\ 
ph )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )
552, 54sylan 457 . 2  |-  ( ( R  e.  _V  /\  ph )  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R ) )
561, 55mpancom 650 1  |-  ( ph  ->  ( R ^ r 0 )  =  (  _I  |`  U. U. R
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   _Vcvv 2864   U.cuni 3908    e. cmpt 4158    _I cid 4386    |` cres 4773    o. ccom 4775   Rel wrel 4776   ` cfv 5337  (class class class)co 5945    e. cmpt2 5947   0cc0 8827   NN0cn0 10057    seq cseq 11138   ^ rcrelexp 24427
This theorem is referenced by:  relexp1  24431  relexpsucl  24432  relexpcnv  24433  relexpdm  24436  relexprn  24437  relexpadd  24439  relexpindlem  24440  rtrclreclem.refl  24445  rtrclreclem.min  24448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-n0 10058  df-z 10117  df-uz 10323  df-seq 11139  df-relexp 24428
  Copyright terms: Public domain W3C validator