Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpexOLD Unicode version

Theorem relexpexOLD 24030
Description: Obsolete; use ovex 5883 instead - NM 5-Apr-2016. The exponentiation of a relation exists. (Contributed by Drahflow, 12-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
relexpexOLD  |-  ( R ^ r N )  e.  _V

Proof of Theorem relexpexOLD
StepHypRef Expression
1 ovex 5883 1  |-  ( R ^ r N )  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788  (class class class)co 5858   ^ rcrelexp 24023
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-pr 3647  df-uni 3828  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator