Users' Mathboxes Mathbox for Drahflow < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpsucr Structured version   Unicode version

Theorem relexpsucr 25122
Description: A reduction for relation exponentiation to the right. (Contributed by Drahflow, 12-Nov-2015.)
Hypotheses
Ref Expression
relexpsucr.1  |-  ( ph  ->  Rel  R )
relexpsucr.2  |-  ( ph  ->  R  e.  _V )
Assertion
Ref Expression
relexpsucr  |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) ) )

Proof of Theorem relexpsucr
Dummy variables  r  n  x  y  z 
b  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexpsucr.2 . . . 4  |-  ( ph  ->  R  e.  _V )
2 uniexg 4698 . . . 4  |-  ( R  e.  _V  ->  U. R  e.  _V )
31, 2syl 16 . . 3  |-  ( ph  ->  U. R  e.  _V )
4 uniexg 4698 . . 3  |-  ( U. R  e.  _V  ->  U.
U. R  e.  _V )
5 resiexg 5180 . . 3  |-  ( U. U. R  e.  _V  ->  (  _I  |`  U. U. R
)  e.  _V )
63, 4, 53syl 19 . 2  |-  ( ph  ->  (  _I  |`  U. U. R )  e.  _V )
7 eqidd 2436 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) )  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) )
8 simprr 734 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  n  =  ( N  + 
1 ) )
9 eqidd 2436 . . . . . . . . . . 11  |-  ( r  =  R  ->  0  =  0 )
10 eqidd 2436 . . . . . . . . . . . 12  |-  ( r  =  R  ->  _V  =  _V )
11 coeq2 5023 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
x  o.  r )  =  ( x  o.  R ) )
1210, 10, 11mpt2eq123dv 6128 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) )  =  ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) )
13 unieq 4016 . . . . . . . . . . . . . 14  |-  ( r  =  R  ->  U. r  =  U. R )
1413unieqd 4018 . . . . . . . . . . . . 13  |-  ( r  =  R  ->  U. U. r  =  U. U. R
)
1514reseq2d 5138 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (  _I  |`  U. U. r
)  =  (  _I  |`  U. U. R ) )
1615mpteq2dv 4288 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
z  e.  _V  |->  (  _I  |`  U. U. r
) )  =  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) )
179, 12, 16seqeq123d 11324 . . . . . . . . . 10  |-  ( r  =  R  ->  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) )  =  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) )
1817fveq1d 5722 . . . . . . . . 9  |-  ( r  =  R  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
1918ad2antrl 709 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
20 eqeq1 2441 . . . . . . . . . . 11  |-  ( n  =  ( N  + 
1 )  ->  (
n  =  ( N  +  1 )  <->  ( N  +  1 )  =  ( N  +  1 ) ) )
2120anbi2d 685 . . . . . . . . . 10  |-  ( n  =  ( N  + 
1 )  ->  (
( r  =  R  /\  n  =  ( N  +  1 ) )  <->  ( r  =  R  /\  ( N  +  1 )  =  ( N  +  1 ) ) ) )
2221anbi2d 685 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  ( N  +  1 ) ) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) ) ) )
23 fveq2 5720 . . . . . . . . . 10  |-  ( n  =  ( N  + 
1 )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  ( N  +  1
) ) )
2423eqeq1d 2443 . . . . . . . . 9  |-  ( n  =  ( N  + 
1 )  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  ( N  +  1 ) )  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) )
2522, 24imbi12d 312 . . . . . . . 8  |-  ( n  =  ( N  + 
1 )  ->  (
( ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )  <->  ( (
( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  ( N  + 
1 )  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 ( N  + 
1 ) )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) ) )
2619, 25mpbiri 225 . . . . . . 7  |-  ( n  =  ( N  + 
1 )  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) ) )
278, 26mpcom 34 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  ( N  +  1 ) ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) ) )
281ad2antll 710 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  ->  R  e.  _V )
29 simpl 444 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  ->  N  e.  NN0 )
30 1nn0 10229 . . . . . . . 8  |-  1  e.  NN0
3130a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
1  e.  NN0 )
32 nn0addcl 10247 . . . . . . 7  |-  ( ( N  e.  NN0  /\  1  e.  NN0 )  -> 
( N  +  1 )  e.  NN0 )
3329, 31, 32syl2anc 643 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( N  +  1 )  e.  NN0 )
34 fvex 5734 . . . . . . 7  |-  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 ( N  + 
1 ) )  e. 
_V
3534a1i 11 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  e.  _V )
367, 27, 28, 33, 35ovmpt2d 6193 . . . . 5  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  ( N  +  1 ) ) )
37 simprl 733 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  r  =  R )
38 fveq2 5720 . . . . . . . . . 10  |-  ( n  =  N  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
3938ad2antll 710 . . . . . . . . 9  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
40 eqeq1 2441 . . . . . . . . . . . 12  |-  ( r  =  R  ->  (
r  =  R  <->  R  =  R ) )
4140anbi1d 686 . . . . . . . . . . 11  |-  ( r  =  R  ->  (
( r  =  R  /\  n  =  N )  <->  ( R  =  R  /\  n  =  N ) ) )
4241anbi2d 685 . . . . . . . . . 10  |-  ( r  =  R  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  N )
)  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) ) ) )
4317fveq1d 5722 . . . . . . . . . . 11  |-  ( r  =  R  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  n ) )
4443eqeq1d 2443 . . . . . . . . . 10  |-  ( r  =  R  ->  (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r
) ) ) `  n )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  <->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) )
4542, 44imbi12d 312 . . . . . . . . 9  |-  ( r  =  R  ->  (
( ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )  <->  ( (
( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( R  =  R  /\  n  =  N
) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) ) )
4639, 45mpbiri 225 . . . . . . . 8  |-  ( r  =  R  ->  (
( ( N  e. 
NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) )  /\  (
r  =  R  /\  n  =  N )
)  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ) )
4737, 46mpcom 34 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( r  =  R  /\  n  =  N ) )  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n )  =  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) )
48 fvex 5734 . . . . . . . 8  |-  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  e. 
_V
4948a1i 11 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  e.  _V )
507, 47, 28, 29, 49ovmpt2d 6193 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
) )
51 simprl 733 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  ->  N  e.  NN0 )
52 nn0uz 10512 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  0 )
5351, 52syl6eleq 2525 . . . . . . . 8  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  ->  N  e.  ( ZZ>= ` 
0 ) )
54 seqp1 11330 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  0
)  ->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 ( N  + 
1 ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) ) )
5553, 54syl 16 . . . . . . 7  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) ) ) )
56 eqidd 2436 . . . . . . . . . . 11  |-  ( z  =  b  ->  (  _I  |`  U. U. R
)  =  (  _I  |`  U. U. R ) )
5756cbvmptv 4292 . . . . . . . . . 10  |-  ( z  e.  _V  |->  (  _I  |`  U. U. R ) )  =  ( b  e.  _V  |->  (  _I  |`  U. U. R ) )
5857a1i 11 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( z  e.  _V  |->  (  _I  |`  U. U. R ) )  =  ( b  e.  _V  |->  (  _I  |`  U. U. R ) ) )
59 eqidd 2436 . . . . . . . . 9  |-  ( ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  /\  b  =  ( N  +  1 ) )  ->  (  _I  |`  U. U. R )  =  (  _I  |`  U. U. R
) )
6051, 30jctir 525 . . . . . . . . . 10  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( N  e.  NN0  /\  1  e.  NN0 )
)
61 elex 2956 . . . . . . . . . 10  |-  ( ( N  +  1 )  e.  NN0  ->  ( N  +  1 )  e. 
_V )
6260, 32, 613syl 19 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( N  +  1 )  e.  _V )
63 simpl 444 . . . . . . . . . 10  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  (  _I  |`  U. U. R
)  e.  _V )
6463ad2antll 710 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  _I  |`  U. U. R )  e.  _V )
6558, 59, 62, 64fvmptd 5802 . . . . . . . 8  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
) )
66 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ s
( x  o.  R
)
67 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ t
( x  o.  R
)
68 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ x
( s  o.  R
)
69 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ y
( s  o.  R
)
70 coeq1 5022 . . . . . . . . . . . . . . 15  |-  ( x  =  s  ->  (
x  o.  R )  =  ( s  o.  R ) )
7170adantr 452 . . . . . . . . . . . . . 14  |-  ( ( x  =  s  /\  y  =  t )  ->  ( x  o.  R
)  =  ( s  o.  R ) )
7266, 67, 68, 69, 71cbvmpt2 6143 . . . . . . . . . . . . 13  |-  ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) )  =  ( s  e. 
_V ,  t  e. 
_V  |->  ( s  o.  R ) )
7372a1i 11 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) )  =  ( s  e.  _V , 
t  e.  _V  |->  ( s  o.  R ) ) )
74 coeq1 5022 . . . . . . . . . . . . 13  |-  ( s  =  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  -> 
( s  o.  R
)  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  o.  R ) )
7574ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  /\  ( s  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  t  =  (  _I  |`  U. U. R ) ) )  ->  ( s  o.  R )  =  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  o.  R
) )
76 simprl 733 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  _I  |`  U. U. R )  e.  _V )
77 coexg 5404 . . . . . . . . . . . . 13  |-  ( ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N )  e.  _V  /\  R  e.  _V )  ->  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R )  e.  _V )
7849, 28, 77syl2anc 643 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R )  e.  _V )
7973, 75, 49, 76, 78ovmpt2d 6193 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R ) )
80 coeq1 5022 . . . . . . . . . . . 12  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  o.  R ) )
8180eqeq2d 2446 . . . . . . . . . . 11  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  <->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N )  o.  R ) ) )
8279, 81syl5ibr 213 . . . . . . . . . 10  |-  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  ->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8382imp 419 . . . . . . . . 9  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
84 oveq2 6081 . . . . . . . . . 10  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
) ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R
) ) )
8584eqeq1d 2443 . . . . . . . . 9  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  N ) ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
)  <->  ( (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) (  _I  |`  U. U. R ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8683, 85syl5ibr 213 . . . . . . . 8  |-  ( ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1
) )  =  (  _I  |`  U. U. R
)  ->  ( (
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
8765, 86mpcom 34 . . . . . . 7  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
( (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `
 N ) ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ( ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) `  ( N  +  1 ) ) )  =  ( ( R ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
8855, 87eqtrd 2467 . . . . . 6  |-  ( ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  =  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  R ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R ) ) ) `  N
)  /\  ( N  e.  NN0  /\  ( (  _I  |`  U. U. R
)  e.  _V  /\  ph ) ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
8950, 88mpancom 651 . . . . 5  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
(  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  R
) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. R
) ) ) `  ( N  +  1
) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
9036, 89eqtrd 2467 . . . 4  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
91 df-relexp 25120 . . . . 5  |-  ^ r  =  ( r  e. 
_V ,  n  e. 
NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )
92 oveq 6079 . . . . . . 7  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( R ^
r ( N  + 
1 ) )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) ) )
93 oveq 6079 . . . . . . . 8  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( R ^
r N )  =  ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N ) )
9493coeq1d 5026 . . . . . . 7  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( R ^ r N )  o.  R )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V ,  y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e. 
_V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) )
9592, 94eqeq12d 2449 . . . . . 6  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R )  <->  ( R
( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0 ( ( x  e.  _V , 
y  e.  _V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `  n
) ) N )  o.  R ) ) )
9695imbi2d 308 . . . . 5  |-  ( ^
r  =  ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) )  ->  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) ) )
9791, 96ax-mp 8 . . . 4  |-  ( ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )  <->  ( ( N  e.  NN0  /\  (
(  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) ( N  +  1 ) )  =  ( ( R ( r  e.  _V ,  n  e.  NN0  |->  (  seq  0
( ( x  e. 
_V ,  y  e. 
_V  |->  ( x  o.  r ) ) ,  ( z  e.  _V  |->  (  _I  |`  U. U. r ) ) ) `
 n ) ) N )  o.  R
) ) )
9890, 97mpbir 201 . . 3  |-  ( ( N  e.  NN0  /\  ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph ) )  -> 
( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) )
9998expcom 425 . 2  |-  ( ( (  _I  |`  U. U. R )  e.  _V  /\ 
ph )  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R ) ) )
1006, 99mpancom 651 1  |-  ( ph  ->  ( N  e.  NN0  ->  ( R ^ r ( N  +  1 ) )  =  ( ( R ^ r N )  o.  R
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   _Vcvv 2948   U.cuni 4007    e. cmpt 4258    _I cid 4485    |` cres 4872    o. ccom 4874   Rel wrel 4875   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   0cc0 8982   1c1 8983    + caddc 8985   NN0cn0 10213   ZZ>=cuz 10480    seq cseq 11315   ^ rcrelexp 25119
This theorem is referenced by:  relexp1  25123  relexpsucl  25124  relexpcnv  25125  relexprn  25128  relexpadd  25130  rtrclreclem.min  25139
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-n0 10214  df-z 10275  df-uz 10481  df-seq 11316  df-relexp 25120
  Copyright terms: Public domain W3C validator