MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relfth Unicode version

Theorem relfth 14061
Description: The set of faithful functors is a relation. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
relfth  |-  Rel  ( C Faith  D )

Proof of Theorem relfth
StepHypRef Expression
1 fthfunc 14059 . 2  |-  ( C Faith 
D )  C_  ( C  Func  D )
2 relfunc 14014 . 2  |-  Rel  ( C  Func  D )
3 relss 4922 . 2  |-  ( ( C Faith  D )  C_  ( C  Func  D )  ->  ( Rel  ( C  Func  D )  ->  Rel  ( C Faith  D ) ) )
41, 2, 3mp2 9 1  |-  Rel  ( C Faith  D )
Colors of variables: wff set class
Syntax hints:    C_ wss 3280   Rel wrel 4842  (class class class)co 6040    Func cfunc 14006   Faith cfth 14055
This theorem is referenced by:  fthpropd  14073  fthres2  14084  cofth  14087
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-func 14010  df-fth 14057
  Copyright terms: Public domain W3C validator