Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relint Structured version   Unicode version

Theorem relint 5001
 Description: The intersection of a class is a relation if at least one member is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
relint
Distinct variable group:   ,

Proof of Theorem relint
StepHypRef Expression
1 reliin 4999 . 2
2 intiin 4147 . . 3
32releqi 4963 . 2
41, 3sylibr 205 1
 Colors of variables: wff set class Syntax hints:   wi 4  wrex 2708  cint 4052  ciin 4096   wrel 4886 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-v 2960  df-in 3329  df-ss 3336  df-int 4053  df-iin 4098  df-rel 4888
 Copyright terms: Public domain W3C validator