Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rellyscon Unicode version

Theorem rellyscon 23782
Description: The real numbers are locally simply connected. (Contributed by Mario Carneiro, 10-Mar-2015.)
Assertion
Ref Expression
rellyscon  |-  ( topGen ` 
ran  (,) )  e. Locally SCon

Proof of Theorem rellyscon
Dummy variables  a 
b  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 retop 18270 . 2  |-  ( topGen ` 
ran  (,) )  e.  Top
2 tg2 16703 . . . 4  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x ) )
3 retopbas 18269 . . . . . . . . . 10  |-  ran  (,)  e. 
TopBases
4 bastg 16704 . . . . . . . . . 10  |-  ( ran 
(,)  e.  TopBases  ->  ran  (,)  C_  ( topGen `  ran  (,) )
)
53, 4ax-mp 8 . . . . . . . . 9  |-  ran  (,)  C_  ( topGen `  ran  (,) )
6 simprl 732 . . . . . . . . 9  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  z  e.  ran  (,) )
75, 6sseldi 3178 . . . . . . . 8  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  z  e.  ( topGen `  ran  (,) )
)
8 simprrr 741 . . . . . . . . 9  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  z  C_  x )
9 vex 2791 . . . . . . . . . 10  |-  z  e. 
_V
109elpw 3631 . . . . . . . . 9  |-  ( z  e.  ~P x  <->  z  C_  x )
118, 10sylibr 203 . . . . . . . 8  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  z  e.  ~P x )
12 elin 3358 . . . . . . . 8  |-  ( z  e.  ( ( topGen ` 
ran  (,) )  i^i  ~P x )  <->  ( z  e.  ( topGen `  ran  (,) )  /\  z  e.  ~P x ) )
137, 11, 12sylanbrc 645 . . . . . . 7  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  z  e.  ( ( topGen `  ran  (,) )  i^i  ~P x
) )
14 simprrl 740 . . . . . . 7  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  y  e.  z )
15 ioof 10741 . . . . . . . . . 10  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
16 ffn 5389 . . . . . . . . . 10  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  (,)  Fn  ( RR*  X.  RR* )
)
17 ovelrn 5996 . . . . . . . . . 10  |-  ( (,) 
Fn  ( RR*  X.  RR* )  ->  ( z  e. 
ran  (,)  <->  E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b ) ) )
1815, 16, 17mp2b 9 . . . . . . . . 9  |-  ( z  e.  ran  (,)  <->  E. a  e.  RR*  E. b  e. 
RR*  z  =  ( a (,) b ) )
19 oveq2 5866 . . . . . . . . . . . 12  |-  ( z  =  ( a (,) b )  ->  (
( topGen `  ran  (,) )t  z
)  =  ( (
topGen `  ran  (,) )t  (
a (,) b ) ) )
20 iooscon 23778 . . . . . . . . . . . 12  |-  ( (
topGen `  ran  (,) )t  (
a (,) b ) )  e. SCon
2119, 20syl6eqel 2371 . . . . . . . . . . 11  |-  ( z  =  ( a (,) b )  ->  (
( topGen `  ran  (,) )t  z
)  e. SCon )
2221rexlimivw 2663 . . . . . . . . . 10  |-  ( E. b  e.  RR*  z  =  ( a (,) b )  ->  (
( topGen `  ran  (,) )t  z
)  e. SCon )
2322rexlimivw 2663 . . . . . . . . 9  |-  ( E. a  e.  RR*  E. b  e.  RR*  z  =  ( a (,) b )  ->  ( ( topGen ` 
ran  (,) )t  z )  e. SCon
)
2418, 23sylbi 187 . . . . . . . 8  |-  ( z  e.  ran  (,)  ->  ( ( topGen `  ran  (,) )t  z
)  e. SCon )
2524ad2antrl 708 . . . . . . 7  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  ( ( topGen `
 ran  (,) )t  z
)  e. SCon )
2613, 14, 25jca32 521 . . . . . 6  |-  ( ( ( x  e.  (
topGen `  ran  (,) )  /\  y  e.  x
)  /\  ( z  e.  ran  (,)  /\  (
y  e.  z  /\  z  C_  x ) ) )  ->  ( z  e.  ( ( topGen `  ran  (,) )  i^i  ~P x
)  /\  ( y  e.  z  /\  (
( topGen `  ran  (,) )t  z
)  e. SCon ) )
)
2726ex 423 . . . . 5  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  (
( z  e.  ran  (,) 
/\  ( y  e.  z  /\  z  C_  x ) )  -> 
( z  e.  ( ( topGen `  ran  (,) )  i^i  ~P x )  /\  ( y  e.  z  /\  ( ( topGen ` 
ran  (,) )t  z )  e. SCon
) ) ) )
2827reximdv2 2652 . . . 4  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  ( E. z  e.  ran  (,) ( y  e.  z  /\  z  C_  x
)  ->  E. z  e.  ( ( topGen `  ran  (,) )  i^i  ~P x
) ( y  e.  z  /\  ( (
topGen `  ran  (,) )t  z
)  e. SCon ) )
)
292, 28mpd 14 . . 3  |-  ( ( x  e.  ( topGen ` 
ran  (,) )  /\  y  e.  x )  ->  E. z  e.  ( ( topGen `  ran  (,) )  i^i  ~P x
) ( y  e.  z  /\  ( (
topGen `  ran  (,) )t  z
)  e. SCon ) )
3029rgen2 2639 . 2  |-  A. x  e.  ( topGen `  ran  (,) ) A. y  e.  x  E. z  e.  (
( topGen `  ran  (,) )  i^i  ~P x ) ( y  e.  z  /\  ( ( topGen `  ran  (,) )t  z )  e. SCon )
31 islly 17194 . 2  |-  ( (
topGen `  ran  (,) )  e. Locally SCon  <->  ( ( topGen `  ran  (,) )  e.  Top  /\  A. x  e.  ( topGen `  ran  (,) ) A. y  e.  x  E. z  e.  (
( topGen `  ran  (,) )  i^i  ~P x ) ( y  e.  z  /\  ( ( topGen `  ran  (,) )t  z )  e. SCon )
) )
321, 30, 31mpbir2an 886 1  |-  ( topGen ` 
ran  (,) )  e. Locally SCon
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    i^i cin 3151    C_ wss 3152   ~Pcpw 3625    X. cxp 4687   ran crn 4690    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   RR*cxr 8866   (,)cioo 10656   ↾t crest 13325   topGenctg 13342   Topctop 16631   TopBasesctb 16635  Locally clly 17190  SConcscon 23751
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-cn 16957  df-cnp 16958  df-con 17138  df-lly 17192  df-tx 17257  df-hmeo 17446  df-xms 17885  df-ms 17886  df-tms 17887  df-ii 18381  df-htpy 18468  df-phtpy 18469  df-phtpc 18490  df-pcon 23752  df-scon 23753
  Copyright terms: Public domain W3C validator