MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpt2opab Unicode version

Theorem relmpt2opab 6217
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpt2opab.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. z ,  w >.  |  ph } )
Assertion
Ref Expression
relmpt2opab  |-  Rel  ( C F D )
Distinct variable groups:    x, w, y, z    y, B    x, A, y
Allowed substitution hints:    ph( x, y, z, w)    A( z, w)    B( x, z, w)    C( x, y, z, w)    D( x, y, z, w)    F( x, y, z, w)

Proof of Theorem relmpt2opab
StepHypRef Expression
1 relopab 4828 . . . . . 6  |-  Rel  { <. z ,  w >.  | 
ph }
2 df-rel 4712 . . . . . 6  |-  ( Rel 
{ <. z ,  w >.  |  ph }  <->  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V ) )
31, 2mpbi 199 . . . . 5  |-  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
43rgenw 2623 . . . 4  |-  A. y  e.  B  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
54rgenw 2623 . . 3  |-  A. x  e.  A  A. y  e.  B  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
6 relmpt2opab.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. z ,  w >.  |  ph } )
76ovmptss 6216 . . 3  |-  ( A. x  e.  A  A. y  e.  B  { <. z ,  w >.  | 
ph }  C_  ( _V  X.  _V )  -> 
( C F D )  C_  ( _V  X.  _V ) )
85, 7ax-mp 8 . 2  |-  ( C F D )  C_  ( _V  X.  _V )
9 df-rel 4712 . 2  |-  ( Rel  ( C F D )  <->  ( C F D )  C_  ( _V  X.  _V ) )
108, 9mpbir 200 1  |-  Rel  ( C F D )
Colors of variables: wff set class
Syntax hints:    = wceq 1632   A.wral 2556   _Vcvv 2801    C_ wss 3165   {copab 4092    X. cxp 4703   Rel wrel 4710  (class class class)co 5874    e. cmpt2 5876
This theorem is referenced by:  relfunc  13752  releqg  14680  releupa  23895  brovmpt2ex  28206
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139
  Copyright terms: Public domain W3C validator