MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relmpt2opab Unicode version

Theorem relmpt2opab 6201
Description: Any function to sets of ordered pairs produces a relation on function value unconditionally. (Contributed by Mario Carneiro, 9-Feb-2015.)
Hypothesis
Ref Expression
relmpt2opab.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. z ,  w >.  |  ph } )
Assertion
Ref Expression
relmpt2opab  |-  Rel  ( C F D )
Distinct variable groups:    x, w, y, z    y, B    x, A, y
Allowed substitution hints:    ph( x, y, z, w)    A( z, w)    B( x, z, w)    C( x, y, z, w)    D( x, y, z, w)    F( x, y, z, w)

Proof of Theorem relmpt2opab
StepHypRef Expression
1 relopab 4812 . . . . . 6  |-  Rel  { <. z ,  w >.  | 
ph }
2 df-rel 4696 . . . . . 6  |-  ( Rel 
{ <. z ,  w >.  |  ph }  <->  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V ) )
31, 2mpbi 199 . . . . 5  |-  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
43rgenw 2610 . . . 4  |-  A. y  e.  B  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
54rgenw 2610 . . 3  |-  A. x  e.  A  A. y  e.  B  { <. z ,  w >.  |  ph }  C_  ( _V  X.  _V )
6 relmpt2opab.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  { <. z ,  w >.  |  ph } )
76ovmptss 6200 . . 3  |-  ( A. x  e.  A  A. y  e.  B  { <. z ,  w >.  | 
ph }  C_  ( _V  X.  _V )  -> 
( C F D )  C_  ( _V  X.  _V ) )
85, 7ax-mp 8 . 2  |-  ( C F D )  C_  ( _V  X.  _V )
9 df-rel 4696 . 2  |-  ( Rel  ( C F D )  <->  ( C F D )  C_  ( _V  X.  _V ) )
108, 9mpbir 200 1  |-  Rel  ( C F D )
Colors of variables: wff set class
Syntax hints:    = wceq 1623   A.wral 2543   _Vcvv 2788    C_ wss 3152   {copab 4076    X. cxp 4687   Rel wrel 4694  (class class class)co 5858    e. cmpt2 5860
This theorem is referenced by:  relfunc  13736  releqg  14664  releupa  23880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123
  Copyright terms: Public domain W3C validator