Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reloprab Unicode version

Theorem reloprab 5912
 Description: An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Assertion
Ref Expression
reloprab
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)

Proof of Theorem reloprab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5911 . 2
21relopabi 4827 1
 Colors of variables: wff set class Syntax hints:   wa 358  wex 1531   wceq 1632  cop 3656   wrel 4710  coprab 5875 This theorem is referenced by:  oprabss  5949  prismorcsetlem  26015  prismorcset  26017  prismorcsetlemc  26020 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-opab 4094  df-xp 4711  df-rel 4712  df-oprab 5878
 Copyright terms: Public domain W3C validator