Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  relrngo Structured version   Unicode version

Theorem relrngo 21965
 Description: The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
relrngo

Proof of Theorem relrngo
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rngo 21964 . 2
21relopabi 5000 1
 Colors of variables: wff set class Syntax hints:   wa 359   w3a 936   wceq 1652   wcel 1725  wral 2705  wrex 2706   cxp 4876   crn 4879   wrel 4883  wf 5450  (class class class)co 6081  cablo 21869  crngo 21963 This theorem is referenced by:  isrngo  21966  rngoi  21968  rngoablo2  22010  rngosn3  22014  isdrngo1  26572  iscrngo2  26608 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-xp 4884  df-rel 4885  df-rngo 21964
 Copyright terms: Public domain W3C validator