![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > relsn | Unicode version |
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.) |
Ref | Expression |
---|---|
relsn.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
relsn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 4852 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | relsn.1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | snss 3894 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | bitr4i 244 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: relsnop 4947 relsn2 5307 setscom 13460 setsid 13471 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 |
This theorem depends on definitions: df-bi 178 df-an 361 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-clab 2399 df-cleq 2405 df-clel 2408 df-v 2926 df-in 3295 df-ss 3302 df-sn 3788 df-rel 4852 |
Copyright terms: Public domain | W3C validator |