MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsn Unicode version

Theorem relsn 4790
Description: A singleton is a relation iff it is an ordered pair. (Contributed by NM, 24-Sep-2013.)
Hypothesis
Ref Expression
relsn.1  |-  A  e. 
_V
Assertion
Ref Expression
relsn  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)

Proof of Theorem relsn
StepHypRef Expression
1 df-rel 4696 . 2  |-  ( Rel 
{ A }  <->  { A }  C_  ( _V  X.  _V ) )
2 relsn.1 . . 3  |-  A  e. 
_V
32snss 3748 . 2  |-  ( A  e.  ( _V  X.  _V )  <->  { A }  C_  ( _V  X.  _V )
)
41, 3bitr4i 243 1  |-  ( Rel 
{ A }  <->  A  e.  ( _V  X.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1684   _Vcvv 2788    C_ wss 3152   {csn 3640    X. cxp 4687   Rel wrel 4694
This theorem is referenced by:  relsnop  4791  relsn2  5143  setscom  13176  setsid  13187
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-v 2790  df-in 3159  df-ss 3166  df-sn 3646  df-rel 4696
  Copyright terms: Public domain W3C validator