MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relsnop Unicode version

Theorem relsnop 4870
Description: A singleton of an ordered pair is a relation. (Contributed by NM, 17-May-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
relsn.1  |-  A  e. 
_V
relsnop.2  |-  B  e. 
_V
Assertion
Ref Expression
relsnop  |-  Rel  { <. A ,  B >. }

Proof of Theorem relsnop
StepHypRef Expression
1 relsn.1 . . 3  |-  A  e. 
_V
2 relsnop.2 . . 3  |-  B  e. 
_V
31, 2opelvv 4814 . 2  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
4 opex 4316 . . 3  |-  <. A ,  B >.  e.  _V
54relsn 4869 . 2  |-  ( Rel 
{ <. A ,  B >. }  <->  <. A ,  B >.  e.  ( _V  X.  _V ) )
63, 5mpbir 200 1  |-  Rel  { <. A ,  B >. }
Colors of variables: wff set class
Syntax hints:    e. wcel 1710   _Vcvv 2864   {csn 3716   <.cop 3719    X. cxp 4766   Rel wrel 4773
This theorem is referenced by:  cnvsn  5234  fsn  5776  imasaddfnlem  13523  ex-res  20934
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pr 4293
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-opab 4157  df-xp 4774  df-rel 4775
  Copyright terms: Public domain W3C validator