MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssdv Structured version   Unicode version

Theorem relssdv 4970
Description: Deduction from subclass principle for relations. (Contributed by NM, 11-Sep-2004.)
Hypotheses
Ref Expression
relssdv.1  |-  ( ph  ->  Rel  A )
relssdv.2  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) )
Assertion
Ref Expression
relssdv  |-  ( ph  ->  A  C_  B )
Distinct variable groups:    x, y, A    x, B, y    ph, x, y

Proof of Theorem relssdv
StepHypRef Expression
1 relssdv.2 . . 3  |-  ( ph  ->  ( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) )
21alrimivv 1643 . 2  |-  ( ph  ->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) )
3 relssdv.1 . . 3  |-  ( ph  ->  Rel  A )
4 ssrel 4966 . . 3  |-  ( Rel 
A  ->  ( A  C_  B  <->  A. x A. y
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
53, 4syl 16 . 2  |-  ( ph  ->  ( A  C_  B  <->  A. x A. y (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  B
) ) )
62, 5mpbird 225 1  |-  ( ph  ->  A  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178   A.wal 1550    e. wcel 1726    C_ wss 3322   <.cop 3819   Rel wrel 4885
This theorem is referenced by:  relssres  5185  poirr2  5260  sofld  5320  relssdmrn  5392  funcres2  14097  wunfunc  14098  fthres2  14131  pospo  14432  subrgdvds  15884  opsrtoslem2  16547  txcls  17638  txdis1cn  17669  txkgen  17686  divstgplem  18152  metustidOLD  18591  metustid  18592  metustexhalfOLD  18595  metustexhalf  18596  ovoliunlem1  19400  dvres2  19801  cvmlift2lem12  25003  dib2dim  32103  dih2dimbALTN  32105  dihmeetlem1N  32150  dihglblem5apreN  32151  dihmeetlem13N  32179  dihjatcclem4  32281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-opab 4269  df-xp 4886  df-rel 4887
  Copyright terms: Public domain W3C validator