MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relssres Unicode version

Theorem relssres 5008
Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994.)
Assertion
Ref Expression
relssres  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )

Proof of Theorem relssres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 443 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  Rel  A )
2 vex 2804 . . . . . . . . 9  |-  x  e. 
_V
3 vex 2804 . . . . . . . . 9  |-  y  e. 
_V
42, 3opeldm 4898 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  A  ->  x  e. 
dom  A )
5 ssel 3187 . . . . . . . 8  |-  ( dom 
A  C_  B  ->  ( x  e.  dom  A  ->  x  e.  B ) )
64, 5syl5 28 . . . . . . 7  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  x  e.  B ) )
76ancld 536 . . . . . 6  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  ( <.
x ,  y >.  e.  A  /\  x  e.  B ) ) )
83opelres 4976 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( A  |`  B )  <-> 
( <. x ,  y
>.  e.  A  /\  x  e.  B ) )
97, 8syl6ibr 218 . . . . 5  |-  ( dom 
A  C_  B  ->  (
<. x ,  y >.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
109adantl 452 . . . 4  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( <. x ,  y
>.  e.  A  ->  <. x ,  y >.  e.  ( A  |`  B )
) )
111, 10relssdv 4795 . . 3  |-  ( ( Rel  A  /\  dom  A 
C_  B )  ->  A  C_  ( A  |`  B ) )
12 resss 4995 . . 3  |-  ( A  |`  B )  C_  A
1311, 12jctil 523 . 2  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
14 eqss 3207 . 2  |-  ( ( A  |`  B )  =  A  <->  ( ( A  |`  B )  C_  A  /\  A  C_  ( A  |`  B ) ) )
1513, 14sylibr 203 1  |-  ( ( Rel  A  /\  dom  A 
C_  B )  -> 
( A  |`  B )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    C_ wss 3165   <.cop 3656   dom cdm 4705    |` cres 4707   Rel wrel 4710
This theorem is referenced by:  resdm  5009  resid  5022  fnresdm  5369  f1ompt  5698  tfr2b  6428  tz7.48-2  6470  omxpenlem  6979  rankwflemb  7481  zorn2lem4  8142  setscom  13192  setsid  13203  dprd2da  15293  dprd2db  15294  dvres3  19279  dvres3a  19280  rlimcnp2  20277  ex-res  20844  indf1ofs  23624  relexpadd  24050  nofulllem3  24429  nofulllem5  24431  resid2  25200  constr3pthlem1  28401
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-dm 4715  df-res 4717
  Copyright terms: Public domain W3C validator