MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reluni Unicode version

Theorem reluni 4808
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni  |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
Distinct variable group:    x, A

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 3955 . . 3  |-  U. A  =  U_ x  e.  A  x
21releqi 4772 . 2  |-  ( Rel  U. A  <->  Rel  U_ x  e.  A  x )
3 reliun 4806 . 2  |-  ( Rel  U_ x  e.  A  x 
<-> 
A. x  e.  A  Rel  x )
42, 3bitri 240 1  |-  ( Rel  U. A  <->  A. x  e.  A  Rel  x )
Colors of variables: wff set class
Syntax hints:    <-> wb 176   A.wral 2543   U.cuni 3827   U_ciun 3905   Rel wrel 4694
This theorem is referenced by:  fununi  5316  tfrlem6  6398  wfrlem6  24261  frrlem5b  24286  frrlem6  24290  bnj1379  28863
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-uni 3828  df-iun 3907  df-rel 4696
  Copyright terms: Public domain W3C validator