MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Unicode version

Theorem remullem 11629
Description: Lemma for remul 11630, immul 11637, and cjmul 11643. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )

Proof of Theorem remullem
StepHypRef Expression
1 replim 11617 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 11617 . . . . . 6  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2oveqan12d 5893 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
4 recl 11611 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 451 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65recnd 8877 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
7 ax-icn 8812 . . . . . . . 8  |-  _i  e.  CC
8 imcl 11612 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
98adantr 451 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
109recnd 8877 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
11 mulcl 8837 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
127, 10, 11sylancr 644 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
136, 12addcld 8870 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  e.  CC )
14 recl 11611 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514adantl 452 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1615recnd 8877 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
17 imcl 11612 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1817adantl 452 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1918recnd 8877 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
20 mulcl 8837 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
217, 19, 20sylancr 644 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2213, 16, 21adddid 8875 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  x.  ( Re
`  B ) )  +  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
_i  x.  ( Im `  B ) ) ) ) )
236, 12, 16adddird 8876 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
Re `  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) ) )
246, 12, 21adddird 8876 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
2523, 24oveq12d 5892 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) ) )  +  ( ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
265, 15remulcld 8879 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  RR )
2726recnd 8877 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2812, 21mulcld 8871 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  e.  CC )
2912, 16mulcld 8871 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  e.  CC )
306, 21mulcld 8871 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  e.  CC )
3127, 28, 29, 30add42d 9052 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) )  +  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
3225, 31eqtr4d 2331 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
337a1i 10 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
3433, 10, 33, 19mul4d 9040 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  x.  (
Im `  B )
) ) )
35 ixi 9413 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
3635oveq1i 5884 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  A )  x.  ( Im `  B
) ) )  =  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )
379, 18remulcld 8879 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  RR )
3837recnd 8877 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
3938mulm1d 9247 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )  =  -u ( ( Im `  A )  x.  (
Im `  B )
) )
4036, 39syl5eq 2340 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
4134, 40eqtrd 2328 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
4241oveq2d 5890 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4327, 38negsubd 9179 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  -u ( ( Im `  A )  x.  (
Im `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
4442, 43eqtrd 2328 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
459, 15remulcld 8879 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  RR )
4645recnd 8877 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )
47 mulcl 8837 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  e.  CC )
487, 46, 47sylancr 644 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  x.  ( Re
`  B ) ) )  e.  CC )
495, 18remulcld 8879 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  RR )
5049recnd 8877 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )
51 mulcl 8837 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) )  e.  CC )
527, 50, 51sylancr 644 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Re `  A
)  x.  ( Im
`  B ) ) )  e.  CC )
5348, 52addcomd 9030 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  +  ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5433, 10, 16mulassd 8874 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  =  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) )
556, 33, 19mul12d 9037 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) )
5654, 55oveq12d 5892 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Im `  A )  x.  ( Re `  B ) ) )  +  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) ) )
5733, 50, 46adddid 8875 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5853, 56, 573eqtr4d 2338 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5944, 58oveq12d 5892 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) )
6032, 59eqtrd 2328 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )
613, 22, 603eqtrd 2332 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) ) )
6261fveq2d 5545 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( Re
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
6326, 37resubcld 9227 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR )
6449, 45readdcld 8878 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )
65 crre 11615 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Re `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
6663, 64, 65syl2anc 642 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6762, 66eqtrd 2328 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6861fveq2d 5545 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( Im
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
69 crim 11616 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Im `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
7063, 64, 69syl2anc 642 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
7168, 70eqtrd 2328 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
72 mulcl 8837 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
73 remim 11618 . . . 4  |-  ( ( A  x.  B )  e.  CC  ->  (
* `  ( A  x.  B ) )  =  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) ) )
7472, 73syl 15 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
75 remim 11618 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
76 remim 11618 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
7775, 76oveqan12d 5893 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
7816, 21subcld 9173 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) )  e.  CC )
796, 12, 78subdird 9252 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) ) ) )
8027, 30, 29, 28subadd4d 9221 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
816, 16, 21subdid 9251 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8212, 16, 21subdid 9251 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
8381, 82oveq12d 5892 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
8466, 62, 443eqtr4d 2338 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8571oveq2d 5890 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) )
8655, 54oveq12d 5892 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
8757, 85, 863eqtr4d 2338 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) )
8884, 87oveq12d 5892 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
8980, 83, 883eqtr4d 2338 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( Re
`  ( A  x.  B ) )  -  ( _i  x.  (
Im `  ( A  x.  B ) ) ) ) )
9077, 79, 893eqtrd 2332 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
9174, 90eqtr4d 2331 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( * `  A )  x.  ( * `  B ) ) )
9267, 71, 913jca 1132 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   1c1 8754   _ici 8755    + caddc 8756    x. cmul 8758    - cmin 9053   -ucneg 9054   *ccj 11597   Recre 11598   Imcim 11599
This theorem is referenced by:  remul  11630  immul  11637  cjmul  11643
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-po 4330  df-so 4331  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-2 9820  df-cj 11600  df-re 11601  df-im 11602
  Copyright terms: Public domain W3C validator