MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remullem Structured version   Unicode version

Theorem remullem 11933
Description: Lemma for remul 11934, immul 11941, and cjmul 11947. (Contributed by NM, 28-Jul-1999.) (Revised by Mario Carneiro, 14-Jul-2014.)
Assertion
Ref Expression
remullem  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )

Proof of Theorem remullem
StepHypRef Expression
1 replim 11921 . . . . . 6  |-  ( A  e.  CC  ->  A  =  ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) )
2 replim 11921 . . . . . 6  |-  ( B  e.  CC  ->  B  =  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) )
31, 2oveqan12d 6100 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  +  ( _i  x.  (
Im `  B )
) ) ) )
4 recl 11915 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
Re `  A )  e.  RR )
54adantr 452 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65recnd 9114 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
7 ax-icn 9049 . . . . . . . 8  |-  _i  e.  CC
8 imcl 11916 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
Im `  A )  e.  RR )
98adantr 452 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
109recnd 9114 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
11 mulcl 9074 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  ( Im `  A )  e.  CC )  -> 
( _i  x.  (
Im `  A )
)  e.  CC )
127, 10, 11sylancr 645 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  A )
)  e.  CC )
136, 12addcld 9107 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  e.  CC )
14 recl 11915 . . . . . . . 8  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514adantl 453 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1615recnd 9114 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
17 imcl 11916 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
1817adantl 453 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1918recnd 9114 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
20 mulcl 9074 . . . . . . 7  |-  ( ( _i  e.  CC  /\  ( Im `  B )  e.  CC )  -> 
( _i  x.  (
Im `  B )
)  e.  CC )
217, 19, 20sylancr 645 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  B )
)  e.  CC )
2213, 16, 21adddid 9112 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  +  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im
`  A ) ) )  x.  ( Re
`  B ) )  +  ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
_i  x.  ( Im `  B ) ) ) ) )
236, 12, 16adddird 9113 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
Re `  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) ) )
246, 12, 21adddird 9113 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
2523, 24oveq12d 6099 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) ) )  +  ( ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) ) )
265, 15remulcld 9116 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  RR )
2726recnd 9114 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  e.  CC )
2812, 21mulcld 9108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  e.  CC )
2912, 16mulcld 9108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  e.  CC )
306, 21mulcld 9108 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  e.  CC )
3127, 28, 29, 30add42d 9290 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) ) )  +  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
327a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  _i  e.  CC )
3332, 10, 32, 19mul4d 9278 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  ( ( _i  x.  _i )  x.  ( ( Im `  A )  x.  (
Im `  B )
) ) )
34 ixi 9651 . . . . . . . . . . . 12  |-  ( _i  x.  _i )  = 
-u 1
3534oveq1i 6091 . . . . . . . . . . 11  |-  ( ( _i  x.  _i )  x.  ( ( Im
`  A )  x.  ( Im `  B
) ) )  =  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )
369, 18remulcld 9116 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  RR )
3736recnd 9114 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  e.  CC )
3837mulm1d 9485 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( -u 1  x.  ( ( Im `  A )  x.  (
Im `  B )
) )  =  -u ( ( Im `  A )  x.  (
Im `  B )
) )
3935, 38syl5eq 2480 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  _i )  x.  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  -u (
( Im `  A
)  x.  ( Im
`  B ) ) )
4033, 39eqtrd 2468 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) )  =  -u ( ( Im
`  A )  x.  ( Im `  B
) ) )
4140oveq2d 6097 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  -u ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4227, 37negsubd 9417 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  -u ( ( Im `  A )  x.  (
Im `  B )
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
4341, 42eqtrd 2468 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
449, 15remulcld 9116 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  RR )
4544recnd 9114 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )
46 mulcl 9074 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Im `  A )  x.  (
Re `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  e.  CC )
477, 45, 46sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Im `  A
)  x.  ( Re
`  B ) ) )  e.  CC )
485, 18remulcld 9116 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  RR )
4948recnd 9114 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )
50 mulcl 9074 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  ( ( Re `  A )  x.  (
Im `  B )
)  e.  CC )  ->  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) )  e.  CC )
517, 49, 50sylancr 645 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( Re `  A
)  x.  ( Im
`  B ) ) )  e.  CC )
5247, 51addcomd 9268 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) )  +  ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5332, 10, 16mulassd 9111 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( Re
`  B ) )  =  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) )
546, 32, 19mul12d 9275 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) )  =  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) )
5553, 54oveq12d 6099 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( _i  x.  ( ( Im `  A )  x.  ( Re `  B ) ) )  +  ( _i  x.  ( ( Re `  A )  x.  (
Im `  B )
) ) ) )
5632, 49, 45adddid 9112 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5752, 55, 563eqtr4d 2478 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  +  ( ( Re `  A
)  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
5843, 57oveq12d 6099 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  +  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  +  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) )
5925, 31, 583eqtr2d 2474 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) )  x.  (
Re `  B )
)  +  ( ( ( Re `  A
)  +  ( _i  x.  ( Im `  A ) ) )  x.  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )
603, 22, 593eqtrd 2472 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  =  ( ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) ) )
6160fveq2d 5732 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( Re
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
6226, 36resubcld 9465 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR )
6348, 44readdcld 9115 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )
64 crre 11919 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Re `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) ) )
6562, 63, 64syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6661, 65eqtrd 2468 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
6760fveq2d 5732 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( Im
`  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) )  +  ( _i  x.  (
( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) ) ) ) )
68 crim 11920 . . . 4  |-  ( ( ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  e.  RR  /\  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) )  e.  RR )  ->  ( Im `  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Im `  A )  x.  (
Im `  B )
) )  +  ( _i  x.  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) ) ) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) ) )
6962, 63, 68syl2anc 643 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  (
( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  +  ( _i  x.  ( ( ( Re `  A )  x.  ( Im `  B ) )  +  ( ( Im `  A )  x.  (
Re `  B )
) ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
7067, 69eqtrd 2468 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Im
`  B ) )  +  ( ( Im
`  A )  x.  ( Re `  B
) ) ) )
71 mulcl 9074 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
72 remim 11922 . . . 4  |-  ( ( A  x.  B )  e.  CC  ->  (
* `  ( A  x.  B ) )  =  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) ) )
7371, 72syl 16 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
74 remim 11922 . . . . 5  |-  ( A  e.  CC  ->  (
* `  A )  =  ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) ) )
75 remim 11922 . . . . 5  |-  ( B  e.  CC  ->  (
* `  B )  =  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) )
7674, 75oveqan12d 6100 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( ( Re `  A
)  -  ( _i  x.  ( Im `  A ) ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )
7716, 21subcld 9411 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) )  e.  CC )
786, 12, 77subdird 9490 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  -  ( _i  x.  (
Im `  A )
) )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) ) ) )
7927, 30, 29, 28subadd4d 9459 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A )  x.  ( Re `  B ) )  -  ( ( Re `  A )  x.  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) )  -  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
806, 16, 21subdid 9489 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
( Re `  B
)  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8112, 16, 21subdid 9489 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( _i  x.  ( Im `  A ) )  x.  ( ( Re `  B )  -  ( _i  x.  ( Im `  B ) ) ) )  =  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) )
8280, 81oveq12d 6099 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( _i  x.  ( Im `  A ) )  x.  ( Re `  B
) )  -  (
( _i  x.  (
Im `  A )
)  x.  ( _i  x.  ( Im `  B ) ) ) ) ) )
8365, 61, 433eqtr4d 2478 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) ) )
8470oveq2d 6097 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( _i  x.  ( ( ( Re
`  A )  x.  ( Im `  B
) )  +  ( ( Im `  A
)  x.  ( Re
`  B ) ) ) ) )
8554, 53oveq12d 6099 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) )  =  ( ( _i  x.  ( ( Re `  A )  x.  ( Im `  B ) ) )  +  ( _i  x.  ( ( Im `  A )  x.  (
Re `  B )
) ) ) )
8656, 84, 853eqtr4d 2478 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  (
Im `  ( A  x.  B ) ) )  =  ( ( ( Re `  A )  x.  ( _i  x.  ( Im `  B ) ) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) )
8783, 86oveq12d 6099 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  -  (
_i  x.  ( Im `  ( A  x.  B
) ) ) )  =  ( ( ( ( Re `  A
)  x.  ( Re
`  B ) )  +  ( ( _i  x.  ( Im `  A ) )  x.  ( _i  x.  (
Im `  B )
) ) )  -  ( ( ( Re
`  A )  x.  ( _i  x.  (
Im `  B )
) )  +  ( ( _i  x.  (
Im `  A )
)  x.  ( Re
`  B ) ) ) ) )
8879, 82, 873eqtr4d 2478 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( ( Re `  B )  -  (
_i  x.  ( Im `  B ) ) ) )  -  ( ( _i  x.  ( Im
`  A ) )  x.  ( ( Re
`  B )  -  ( _i  x.  (
Im `  B )
) ) ) )  =  ( ( Re
`  ( A  x.  B ) )  -  ( _i  x.  (
Im `  ( A  x.  B ) ) ) ) )
8976, 78, 883eqtrd 2472 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( * `  A )  x.  (
* `  B )
)  =  ( ( Re `  ( A  x.  B ) )  -  ( _i  x.  ( Im `  ( A  x.  B ) ) ) ) )
9073, 89eqtr4d 2471 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( * `  ( A  x.  B )
)  =  ( ( * `  A )  x.  ( * `  B ) ) )
9166, 70, 903jca 1134 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Re `  B )
)  -  ( ( Im `  A )  x.  ( Im `  B ) ) )  /\  ( Im `  ( A  x.  B
) )  =  ( ( ( Re `  A )  x.  (
Im `  B )
)  +  ( ( Im `  A )  x.  ( Re `  B ) ) )  /\  ( * `  ( A  x.  B
) )  =  ( ( * `  A
)  x.  ( * `
 B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   1c1 8991   _ici 8992    + caddc 8993    x. cmul 8995    - cmin 9291   -ucneg 9292   *ccj 11901   Recre 11902   Imcim 11903
This theorem is referenced by:  remul  11934  immul  11941  cjmul  11947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-2 10058  df-cj 11904  df-re 11905  df-im 11906
  Copyright terms: Public domain W3C validator