MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reparphti Structured version   Unicode version

Theorem reparphti 19014
Description: Lemma for reparpht 19015. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.)
Hypotheses
Ref Expression
reparpht.2  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
reparpht.3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
reparpht.4  |-  ( ph  ->  ( G `  0
)  =  0 )
reparpht.5  |-  ( ph  ->  ( G `  1
)  =  1 )
reparphti.6  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
Assertion
Ref Expression
reparphti  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Distinct variable groups:    x, y, F    x, G, y    x, J, y    ph, x, y
Allowed substitution hints:    H( x, y)

Proof of Theorem reparphti
Dummy variables  s 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reparpht.3 . . 3  |-  ( ph  ->  G  e.  ( II 
Cn  II ) )
2 reparpht.2 . . 3  |-  ( ph  ->  F  e.  ( II 
Cn  J ) )
3 cnco 17322 . . 3  |-  ( ( G  e.  ( II 
Cn  II )  /\  F  e.  ( II  Cn  J ) )  -> 
( F  o.  G
)  e.  ( II 
Cn  J ) )
41, 2, 3syl2anc 643 . 2  |-  ( ph  ->  ( F  o.  G
)  e.  ( II 
Cn  J ) )
5 reparphti.6 . . 3  |-  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )
6 iitopon 18901 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
76a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
8 eqid 2435 . . . . . . . . . . 11  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
98cnfldtop 18810 . . . . . . . . . 10  |-  ( TopOpen ` fld )  e.  Top
10 cnrest2r 17343 . . . . . . . . . 10  |-  ( (
TopOpen ` fld )  e.  Top  ->  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )  C_  (
( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
119, 10mp1i 12 . . . . . . . . 9  |-  ( ph  ->  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) 
C_  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) ) )
127, 7cnmpt2nd 17693 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  II ) )
13 iirevcn 18947 . . . . . . . . . . . 12  |-  ( z  e.  ( 0 [,] 1 )  |->  ( 1  -  z ) )  e.  ( II  Cn  II )
1413a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  ( z  e.  ( 0 [,] 1 ) 
|->  ( 1  -  z
) )  e.  ( II  Cn  II ) )
15 oveq2 6081 . . . . . . . . . . 11  |-  ( z  =  y  ->  (
1  -  z )  =  ( 1  -  y ) )
167, 7, 12, 7, 14, 15cnmpt21 17695 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  II ) )
178dfii3 18905 . . . . . . . . . . 11  |-  II  =  ( ( TopOpen ` fld )t  ( 0 [,] 1 ) )
1817oveq2i 6084 . . . . . . . . . 10  |-  ( ( II  tX  II )  Cn  II )  =  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) )
1916, 18syl6eleq 2525 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2011, 19sseldd 3341 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( 1  -  y
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
217, 7cnmpt1st 17692 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  II ) )
227, 7, 21, 1cnmpt21f 17696 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  II ) )
2322, 18syl6eleq 2525 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2411, 23sseldd 3341 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( G `  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
258mulcn 18889 . . . . . . . . 9  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
2625a1i 11 . . . . . . . 8  |-  ( ph  ->  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
277, 7, 20, 24, 26cnmpt22f 17699 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( 1  -  y )  x.  ( G `  x )
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
2812, 18syl6eleq 2525 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
2911, 28sseldd 3341 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  y )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
3021, 18syl6eleq 2525 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
3111, 30sseldd 3341 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  x )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
327, 7, 29, 31, 26cnmpt22f 17699 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( y  x.  x
) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
338addcn 18887 . . . . . . . 8  |-  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
3433a1i 11 . . . . . . 7  |-  ( ph  ->  +  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
357, 7, 27, 32, 34cnmpt22f 17699 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen ` fld ) ) )
368cnfldtopon 18809 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
3736a1i 11 . . . . . . 7  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
38 iiuni 18903 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
3938, 38cnf 17302 . . . . . . . . . . . . . 14  |-  ( G  e.  ( II  Cn  II )  ->  G :
( 0 [,] 1
) --> ( 0 [,] 1 ) )
401, 39syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  G : ( 0 [,] 1 ) --> ( 0 [,] 1 ) )
4140ffvelrnda 5862 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0 [,] 1
) )  ->  ( G `  x )  e.  ( 0 [,] 1
) )
4241adantrr 698 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( G `  x
)  e.  ( 0 [,] 1 ) )
43 simprl 733 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  ->  x  e.  ( 0 [,] 1 ) )
44 simprr 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
y  e.  ( 0 [,] 1 ) )
45 0re 9083 . . . . . . . . . . . 12  |-  0  e.  RR
46 1re 9082 . . . . . . . . . . . 12  |-  1  e.  RR
47 icccvx 18967 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( ( ( G `
 x )  e.  ( 0 [,] 1
)  /\  x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) ) )
4845, 46, 47mp2an 654 . . . . . . . . . . 11  |-  ( ( ( G `  x
)  e.  ( 0 [,] 1 )  /\  x  e.  ( 0 [,] 1 )  /\  y  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  e.  ( 0 [,] 1 ) )
4942, 43, 44, 48syl3anc 1184 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( 0 [,] 1
)  /\  y  e.  ( 0 [,] 1
) ) )  -> 
( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
5049ralrimivva 2790 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) )  e.  ( 0 [,] 1 ) )
51 eqid 2435 . . . . . . . . . 10  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )
5251fmpt2 6410 . . . . . . . . 9  |-  ( A. x  e.  ( 0 [,] 1 ) A. y  e.  ( 0 [,] 1 ) ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) )  e.  ( 0 [,] 1 )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) ) : ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) --> ( 0 [,] 1 ) )
5350, 52sylib 189 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1
) )
54 frn 5589 . . . . . . . 8  |-  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) : ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) --> ( 0 [,] 1 )  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
5553, 54syl 16 . . . . . . 7  |-  ( ph  ->  ran  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  C_  ( 0 [,] 1
) )
56 unitssre 11034 . . . . . . . . 9  |-  ( 0 [,] 1 )  C_  RR
57 ax-resscn 9039 . . . . . . . . 9  |-  RR  C_  CC
5856, 57sstri 3349 . . . . . . . 8  |-  ( 0 [,] 1 )  C_  CC
5958a1i 11 . . . . . . 7  |-  ( ph  ->  ( 0 [,] 1
)  C_  CC )
60 cnrest2 17342 . . . . . . 7  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  C_  (
0 [,] 1 )  /\  ( 0 [,] 1 )  C_  CC )  ->  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( ( ( 1  -  y
)  x.  ( G `
 x ) )  +  ( y  x.  x ) ) )  e.  ( ( II 
tX  II )  Cn  ( TopOpen ` fld ) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6137, 55, 59, 60syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  ( TopOpen
` fld
) )  <->  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) ) )  e.  ( ( II  tX  II )  Cn  (
( TopOpen ` fld )t  ( 0 [,] 1 ) ) ) ) )
6235, 61mpbid 202 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  ( ( TopOpen ` fld )t  (
0 [,] 1 ) ) ) )
6362, 18syl6eleqr 2526 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  e.  ( ( II  tX  II )  Cn  II ) )
647, 7, 63, 2cnmpt21f 17696 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( F `  (
( ( 1  -  y )  x.  ( G `  x )
)  +  ( y  x.  x ) ) ) )  e.  ( ( II  tX  II )  Cn  J ) )
655, 64syl5eqel 2519 . 2  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  J ) )
6640ffvelrnda 5862 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  ( 0 [,] 1
) )
6758, 66sseldi 3338 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  s )  e.  CC )
6867mulid2d 9098 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  ( G `
 s ) )  =  ( G `  s ) )
6958sseli 3336 . . . . . . . 8  |-  ( s  e.  ( 0 [,] 1 )  ->  s  e.  CC )
7069adantl 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  CC )
7170mul02d 9256 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  s )  =  0 )
7268, 71oveq12d 6091 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( ( G `
 s )  +  0 ) )
7367addid1d 9258 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( G `  s
)  +  0 )  =  ( G `  s ) )
7472, 73eqtrd 2467 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) )  =  ( G `  s ) )
7574fveq2d 5724 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) )  =  ( F `  ( G `  s ) ) )
76 simpr 448 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
77 0elunit 11007 . . . 4  |-  0  e.  ( 0 [,] 1
)
78 simpr 448 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  0 )  ->  y  =  0 )
7978oveq2d 6089 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  ( 1  -  0 ) )
80 ax-1cn 9040 . . . . . . . . . 10  |-  1  e.  CC
8180subid1i 9364 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
8279, 81syl6eq 2483 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( 1  -  y )  =  1 )
83 simpl 444 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  0 )  ->  x  =  s )
8483fveq2d 5724 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( G `  x )  =  ( G `  s ) )
8582, 84oveq12d 6091 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 1  x.  ( G `
 s ) ) )
8678, 83oveq12d 6091 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( y  x.  x )  =  ( 0  x.  s ) )
8785, 86oveq12d 6091 . . . . . 6  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 1  x.  ( G `  s )
)  +  ( 0  x.  s ) ) )
8887fveq2d 5724 . . . . 5  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
89 fvex 5734 . . . . 5  |-  ( F `
 ( ( 1  x.  ( G `  s ) )  +  ( 0  x.  s
) ) )  e. 
_V
9088, 5, 89ovmpt2a 6196 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s H 0 )  =  ( F `  ( ( 1  x.  ( G `
 s ) )  +  ( 0  x.  s ) ) ) )
9176, 77, 90sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( F `  ( ( 1  x.  ( G `  s
) )  +  ( 0  x.  s ) ) ) )
92 fvco3 5792 . . . 4  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  s )  =  ( F `  ( G `
 s ) ) )
9340, 92sylan 458 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  s )  =  ( F `  ( G `  s ) ) )
9475, 91, 933eqtr4d 2477 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( ( F  o.  G ) `  s ) )
95 1elunit 11008 . . . 4  |-  1  e.  ( 0 [,] 1
)
96 simpr 448 . . . . . . . . . 10  |-  ( ( x  =  s  /\  y  =  1 )  ->  y  =  1 )
9796oveq2d 6089 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  ( 1  -  1 ) )
98 1m1e0 10060 . . . . . . . . 9  |-  ( 1  -  1 )  =  0
9997, 98syl6eq 2483 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( 1  -  y )  =  0 )
100 simpl 444 . . . . . . . . 9  |-  ( ( x  =  s  /\  y  =  1 )  ->  x  =  s )
101100fveq2d 5724 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( G `  x )  =  ( G `  s ) )
10299, 101oveq12d 6091 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( 0  x.  ( G `
 s ) ) )
10396, 100oveq12d 6091 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( y  x.  x )  =  ( 1  x.  s ) )
104102, 103oveq12d 6091 . . . . . 6  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) ) )
105104fveq2d 5724 . . . . 5  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
106 fvex 5734 . . . . 5  |-  ( F `
 ( ( 0  x.  ( G `  s ) )  +  ( 1  x.  s
) ) )  e. 
_V
107105, 5, 106ovmpt2a 6196 . . . 4  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s H 1 )  =  ( F `  ( ( 0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) ) )
10876, 95, 107sylancl 644 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  ( ( 0  x.  ( G `  s
) )  +  ( 1  x.  s ) ) ) )
10967mul02d 9256 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  x.  ( G `
 s ) )  =  0 )
11070mulid2d 9098 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  x.  s )  =  s )
111109, 110oveq12d 6091 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  ( 0  +  s ) )
11270addid2d 9259 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0  +  s )  =  s )
113111, 112eqtrd 2467 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0  x.  ( G `  s )
)  +  ( 1  x.  s ) )  =  s )
114113fveq2d 5724 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
0  x.  ( G `
 s ) )  +  ( 1  x.  s ) ) )  =  ( F `  s ) )
115108, 114eqtrd 2467 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( F `  s ) )
116 reparpht.4 . . . . . . . . 9  |-  ( ph  ->  ( G `  0
)  =  0 )
117116adantr 452 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  0 )  =  0 )
118117oveq2d 6089 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  ( ( 1  -  s )  x.  0 ) )
119 subcl 9297 . . . . . . . . 9  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
12080, 70, 119sylancr 645 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1  -  s )  e.  CC )
121120mul01d 9257 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  0 )  =  0 )
122118, 121eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 0 ) )  =  0 )
12370mul01d 9257 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  0 )  =  0 )
124122, 123oveq12d 6091 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  ( 0  +  0 ) )
125 00id 9233 . . . . 5  |-  ( 0  +  0 )  =  0
126124, 125syl6eq 2483 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) )  =  0 )
127126fveq2d 5724 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) )  =  ( F ` 
0 ) )
128 simpr 448 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  y  =  s )
129128oveq2d 6089 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
130 simpl 444 . . . . . . . . 9  |-  ( ( x  =  0  /\  y  =  s )  ->  x  =  0 )
131130fveq2d 5724 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( G `  x )  =  ( G `  0 ) )
132129, 131oveq12d 6091 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 0 ) ) )
133128, 130oveq12d 6091 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  0 ) )
134132, 133oveq12d 6091 . . . . . 6  |-  ( ( x  =  0  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  0 )
)  +  ( s  x.  0 ) ) )
135134fveq2d 5724 . . . . 5  |-  ( ( x  =  0  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
136 fvex 5734 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
0 ) )  +  ( s  x.  0 ) ) )  e. 
_V
137135, 5, 136ovmpt2a 6196 . . . 4  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 0 ) )  +  ( s  x.  0 ) ) ) )
13877, 76, 137sylancr 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  0
) )  +  ( s  x.  0 ) ) ) )
139 fvco3 5792 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  0 )  =  ( F `  ( G `  0 )
) )
14040, 77, 139sylancl 644 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 ( G ` 
0 ) ) )
141116fveq2d 5724 . . . . 5  |-  ( ph  ->  ( F `  ( G `  0 )
)  =  ( F `
 0 ) )
142140, 141eqtrd 2467 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  0
)  =  ( F `
 0 ) )
143142adantr 452 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  0 )  =  ( F ` 
0 ) )
144127, 138, 1433eqtr4d 2477 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( ( F  o.  G ) ` 
0 ) )
145 reparpht.5 . . . . . . . . 9  |-  ( ph  ->  ( G `  1
)  =  1 )
146145adantr 452 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( G `  1 )  =  1 )
147146oveq2d 6089 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( ( 1  -  s )  x.  1 ) )
148120mulid1d 9097 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  1 )  =  ( 1  -  s ) )
149147, 148eqtrd 2467 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  x.  ( G `
 1 ) )  =  ( 1  -  s ) )
15070mulid1d 9097 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s  x.  1 )  =  s )
151149, 150oveq12d 6091 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  ( ( 1  -  s )  +  s ) )
152 npcan 9306 . . . . . 6  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( ( 1  -  s )  +  s )  =  1 )
15380, 70, 152sylancr 645 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1  -  s
)  +  s )  =  1 )
154151, 153eqtrd 2467 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) )  =  1 )
155154fveq2d 5724 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  ( (
( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) )  =  ( F ` 
1 ) )
156 simpr 448 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  y  =  s )
157156oveq2d 6089 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( 1  -  y )  =  ( 1  -  s ) )
158 simpl 444 . . . . . . . . 9  |-  ( ( x  =  1  /\  y  =  s )  ->  x  =  1 )
159158fveq2d 5724 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( G `  x )  =  ( G `  1 ) )
160157, 159oveq12d 6091 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( 1  -  y )  x.  ( G `  x
) )  =  ( ( 1  -  s
)  x.  ( G `
 1 ) ) )
161156, 158oveq12d 6091 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  ( y  x.  x )  =  ( s  x.  1 ) )
162160, 161oveq12d 6091 . . . . . 6  |-  ( ( x  =  1  /\  y  =  s )  ->  ( ( ( 1  -  y )  x.  ( G `  x ) )  +  ( y  x.  x
) )  =  ( ( ( 1  -  s )  x.  ( G `  1 )
)  +  ( s  x.  1 ) ) )
163162fveq2d 5724 . . . . 5  |-  ( ( x  =  1  /\  y  =  s )  ->  ( F `  ( ( ( 1  -  y )  x.  ( G `  x
) )  +  ( y  x.  x ) ) )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
164 fvex 5734 . . . . 5  |-  ( F `
 ( ( ( 1  -  s )  x.  ( G ` 
1 ) )  +  ( s  x.  1 ) ) )  e. 
_V
165163, 5, 164ovmpt2a 6196 . . . 4  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 H s )  =  ( F `  ( ( ( 1  -  s
)  x.  ( G `
 1 ) )  +  ( s  x.  1 ) ) ) )
16695, 76, 165sylancr 645 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( F `  ( ( ( 1  -  s )  x.  ( G `  1
) )  +  ( s  x.  1 ) ) ) )
167 fvco3 5792 . . . . . 6  |-  ( ( G : ( 0 [,] 1 ) --> ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( ( F  o.  G ) `  1 )  =  ( F `  ( G `  1 )
) )
16840, 95, 167sylancl 644 . . . . 5  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 ( G ` 
1 ) ) )
169145fveq2d 5724 . . . . 5  |-  ( ph  ->  ( F `  ( G `  1 )
)  =  ( F `
 1 ) )
170168, 169eqtrd 2467 . . . 4  |-  ( ph  ->  ( ( F  o.  G ) `  1
)  =  ( F `
 1 ) )
171170adantr 452 . . 3  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( F  o.  G
) `  1 )  =  ( F ` 
1 ) )
172155, 166, 1713eqtr4d 2477 . 2  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( ( F  o.  G ) ` 
1 ) )
1734, 2, 65, 94, 115, 144, 172isphtpy2d 19004 1  |-  ( ph  ->  H  e.  ( ( F  o.  G ) ( PHtpy `  J ) F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697    C_ wss 3312    e. cmpt 4258    X. cxp 4868   ran crn 4871    o. ccom 4874   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    - cmin 9283   [,]cicc 10911   ↾t crest 13640   TopOpenctopn 13641  ℂfldccnfld 16695   Topctop 16950  TopOnctopon 16951    Cn ccn 17280    tX ctx 17584   IIcii 18897   PHtpycphtpy 18985
This theorem is referenced by:  reparpht  19015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-icc 10915  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cn 17283  df-cnp 17284  df-tx 17586  df-hmeo 17779  df-xms 18342  df-ms 18343  df-tms 18344  df-ii 18899  df-htpy 18987  df-phtpy 18988
  Copyright terms: Public domain W3C validator