MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescncf Unicode version

Theorem rescncf 18799
Description: A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
rescncf  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )

Proof of Theorem rescncf
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F  e.  ( A -cn-> B ) )
2 cncfrss 18793 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
32adantl 453 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A  C_  CC )
4 cncfrss2 18794 . . . . . . . 8  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
54adantl 453 . . . . . . 7  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  B  C_  CC )
6 elcncf 18791 . . . . . . 7  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
73, 5, 6syl2anc 643 . . . . . 6  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) ) )
81, 7mpbid 202 . . . . 5  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
98simpld 446 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  F : A --> B )
10 simpl 444 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  A )
11 fssres 5551 . . . 4  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
129, 10, 11syl2anc 643 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C ) : C --> B )
138simprd 450 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) )
14 ssralv 3351 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
15 ssralv 3351 . . . . . . . . 9  |-  ( C 
C_  A  ->  ( A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y ) ) )
16 fvres 5686 . . . . . . . . . . . . . . 15  |-  ( x  e.  C  ->  (
( F  |`  C ) `
 x )  =  ( F `  x
) )
17 fvres 5686 . . . . . . . . . . . . . . 15  |-  ( w  e.  C  ->  (
( F  |`  C ) `
 w )  =  ( F `  w
) )
1816, 17oveqan12d 6040 . . . . . . . . . . . . . 14  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) )  =  ( ( F `  x )  -  ( F `  w )
) )
1918fveq2d 5673 . . . . . . . . . . . . 13  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  =  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) ) )
2019breq1d 4164 . . . . . . . . . . . 12  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y  <->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) )
2120imbi2d 308 . . . . . . . . . . 11  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y )  <->  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( F `  x )  -  ( F `  w )
) )  <  y
) ) )
2221biimprd 215 . . . . . . . . . 10  |-  ( ( x  e.  C  /\  w  e.  C )  ->  ( ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2322ralimdva 2728 . . . . . . . . 9  |-  ( x  e.  C  ->  ( A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2415, 23sylan9 639 . . . . . . . 8  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2524reximdv 2761 . . . . . . 7  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2625ralimdv 2729 . . . . . 6  |-  ( ( C  C_  A  /\  x  e.  C )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2726ralimdva 2728 . . . . 5  |-  ( C 
C_  A  ->  ( A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2814, 27syld 42 . . . 4  |-  ( C 
C_  A  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( F `  x
)  -  ( F `
 w ) ) )  <  y )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) )
2910, 13, 28sylc 58 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) )
3010, 3sstrd 3302 . . . 4  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  ->  C  C_  CC )
31 elcncf 18791 . . . 4  |-  ( ( C  C_  CC  /\  B  C_  CC )  ->  (
( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3230, 5, 31syl2anc 643 . . 3  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( ( F  |`  C )  e.  ( C -cn-> B )  <->  ( ( F  |`  C ) : C --> B  /\  A. x  e.  C  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  C  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( ( F  |`  C ) `  x
)  -  ( ( F  |`  C ) `  w ) ) )  <  y ) ) ) )
3312, 29, 32mpbir2and 889 . 2  |-  ( ( C  C_  A  /\  F  e.  ( A -cn-> B ) )  -> 
( F  |`  C )  e.  ( C -cn-> B ) )
3433ex 424 1  |-  ( C 
C_  A  ->  ( F  e.  ( A -cn-> B )  ->  ( F  |`  C )  e.  ( C -cn-> B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717   A.wral 2650   E.wrex 2651    C_ wss 3264   class class class wbr 4154    |` cres 4821   -->wf 5391   ` cfv 5395  (class class class)co 6021   CCcc 8922    < clt 9054    - cmin 9224   RR+crp 10545   abscabs 11967   -cn->ccncf 18778
This theorem is referenced by:  cpnres  19691  dvlip  19745  dvlip2  19747  c1liplem1  19748  c1lip2  19750  dvgt0lem1  19754  dvivthlem1  19760  dvne0  19763  lhop1lem  19765  dvcnvrelem1  19769  dvcnvrelem2  19770  dvcvx  19772  dvfsumle  19773  dvfsumabs  19775  dvfsumlem2  19779  ftc2ditglem  19797  itgparts  19799  itgsubstlem  19800  psercn2  20207  abelth  20225  abelth2  20226  efcvx  20233  pige3  20293  dvrelog  20396  logcn  20406  logccv  20422  loglesqr  20510  ftc1cnnclem  25979  cncfres  26166  lhe4.4ex1a  27216  cncfmptss  27386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-map 6957  df-cncf 18780
  Copyright terms: Public domain W3C validator