Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rescon Unicode version

Theorem rescon 23792
Description: A subset of  RR is simply connected iff it is connected. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypothesis
Ref Expression
rescon.1  |-  J  =  ( ( topGen `  ran  (,) )t  A )
Assertion
Ref Expression
rescon  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)

Proof of Theorem rescon
Dummy variables  t 
s  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sconpcon 23773 . . 3  |-  ( J  e. SCon  ->  J  e. PCon )
2 pconcon 23777 . . 3  |-  ( J  e. PCon  ->  J  e.  Con )
31, 2syl 15 . 2  |-  ( J  e. SCon  ->  J  e.  Con )
4 eqid 2296 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
5 eqid 2296 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
64, 5rerest 18326 . . . . . 6  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  ( ( topGen `  ran  (,) )t  A
) )
7 rescon.1 . . . . . 6  |-  J  =  ( ( topGen `  ran  (,) )t  A )
86, 7syl6eqr 2346 . . . . 5  |-  ( A 
C_  RR  ->  ( (
TopOpen ` fld )t  A )  =  J )
98adantr 451 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  =  J )
10 simpl 443 . . . . . 6  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  RR )
11 ax-resscn 8810 . . . . . 6  |-  RR  C_  CC
1210, 11syl6ss 3204 . . . . 5  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A  C_  CC )
13 df-3an 936 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  A  /\  t  e.  ( 0 [,] 1 ) )  <-> 
( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )
14 oveq2 5882 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
t  x.  z )  =  ( t  x.  x ) )
15 oveq2 5882 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  y ) )
1614, 15oveqan12d 5893 . . . . . . . . . . 11  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) ) )
1716eleq1d 2362 . . . . . . . . . 10  |-  ( ( z  =  x  /\  w  =  y )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
1817ralbidv 2576 . . . . . . . . 9  |-  ( ( z  =  x  /\  w  =  y )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A ) )
19 oveq2 5882 . . . . . . . . . . . 12  |-  ( z  =  y  ->  (
t  x.  z )  =  ( t  x.  y ) )
20 oveq2 5882 . . . . . . . . . . . 12  |-  ( w  =  x  ->  (
( 1  -  t
)  x.  w )  =  ( ( 1  -  t )  x.  x ) )
2119, 20oveqan12d 5893 . . . . . . . . . . 11  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( t  x.  z )  +  ( ( 1  -  t
)  x.  w ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x ) ) )
2221eleq1d 2362 . . . . . . . . . 10  |-  ( ( z  =  y  /\  w  =  x )  ->  ( ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
2322ralbidv 2576 . . . . . . . . 9  |-  ( ( z  =  y  /\  w  =  x )  ->  ( A. t  e.  ( 0 [,] 1
) ( ( t  x.  z )  +  ( ( 1  -  t )  x.  w
) )  e.  A  <->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
24 0re 8854 . . . . . . . . . . . . . . . . . 18  |-  0  e.  RR
25 1re 8853 . . . . . . . . . . . . . . . . . 18  |-  1  e.  RR
26 iccssre 10747 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
2724, 25, 26mp2an 653 . . . . . . . . . . . . . . . . 17  |-  ( 0 [,] 1 )  C_  RR
2827, 11sstri 3201 . . . . . . . . . . . . . . . 16  |-  ( 0 [,] 1 )  C_  CC
29 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  ( 0 [,] 1 ) )
3028, 29sseldi 3191 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  s  e.  CC )
3112adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A  C_  CC )
32 simpr2 962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  A )
3331, 32sseldd 3194 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  y  e.  CC )
3433adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
3530, 34mulcld 8871 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( s  x.  y )  e.  CC )
36 ax-1cn 8811 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
37 subcl 9067 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  s
)  e.  CC )
3836, 30, 37sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  CC )
39 simpr1 961 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  A )
4031, 39sseldd 3194 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  x  e.  CC )
4140adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
4238, 41mulcld 8871 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  s )  x.  x )  e.  CC )
4335, 42addcomd 9030 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
44 nncan 9092 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  s  e.  CC )  ->  ( 1  -  (
1  -  s ) )  =  s )
4536, 30, 44sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  ( 1  -  s
) )  =  s )
4645oveq1d 5889 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  ( 1  -  s ) )  x.  y )  =  ( s  x.  y ) )
4746oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( s  x.  y ) ) )
4843, 47eqtr4d 2331 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  =  ( ( ( 1  -  s )  x.  x
)  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) ) )
49 iirev 18443 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 [,] 1 )  ->  (
1  -  s )  e.  ( 0 [,] 1 ) )
5049adantl 452 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1  -  s )  e.  ( 0 [,] 1 ) )
517eleq1i 2359 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( J  e.  Con  <->  ( ( topGen `
 ran  (,) )t  A
)  e.  Con )
52 reconn 18349 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A 
C_  RR  ->  ( ( ( topGen `  ran  (,) )t  A
)  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5351, 52syl5bb 248 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A 
C_  RR  ->  ( J  e.  Con  <->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
) )
5453biimpa 470 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  A. x  e.  A  A. y  e.  A  ( x [,] y )  C_  A
)
5554r19.21bi 2654 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  ->  A. y  e.  A  ( x [,] y )  C_  A
)
5655r19.21bi 2654 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  x  e.  A
)  /\  y  e.  A )  ->  (
x [,] y ) 
C_  A )
5756anasss 628 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  (
x [,] y ) 
C_  A )
58573adantr3 1116 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  ( x [,] y )  C_  A
)
5958adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( x [,] y )  C_  A
)
60 simpr 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  ( 0 [,] 1 ) )
6127, 60sseldi 3191 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  RR )
62 simplll 734 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  A  C_  RR )
6339adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  A
)
6462, 63sseldd 3194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  RR )
6561, 64remulcld 8879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  e.  RR )
66 resubcl 9127 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 1  -  t
)  e.  RR )
6725, 61, 66sylancr 644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  RR )
6832adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  A
)
6962, 68sseldd 3194 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  RR )
7067, 69remulcld 8879 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  y )  e.  RR )
7165, 70readdcld 8878 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR )
7261recnd 8877 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  e.  CC )
73 pncan3 9075 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( t  e.  CC  /\  1  e.  CC )  ->  ( t  +  ( 1  -  t ) )  =  1 )
7472, 36, 73sylancl 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  +  ( 1  -  t
) )  =  1 )
7574oveq1d 5889 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( 1  x.  x ) )
7667recnd 8877 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  -  t )  e.  CC )
7740adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  e.  CC )
7872, 76, 77adddird 8876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  x )  =  ( ( t  x.  x
)  +  ( ( 1  -  t )  x.  x ) ) )
7977mulid2d 8869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  x )  =  x )
8075, 78, 793eqtr3d 2336 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  =  x )
8167, 64remulcld 8879 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  e.  RR )
8224, 25elicc2i 10732 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  e.  ( 0 [,] 1 )  <->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8360, 82sylib 188 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  e.  RR  /\  0  <_ 
t  /\  t  <_  1 ) )
8483simp3d 969 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  t  <_  1
)
85 subge0 9303 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 1  e.  RR  /\  t  e.  RR )  ->  ( 0  <_  (
1  -  t )  <-> 
t  <_  1 ) )
8625, 61, 85sylancr 644 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 0  <_ 
( 1  -  t
)  <->  t  <_  1
) )
8784, 86mpbird 223 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  (
1  -  t ) )
88 simplr3 999 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  y
)
8964, 69, 67, 87, 88lemul2ad 9713 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( 1  -  t )  x.  x )  <_  (
( 1  -  t
)  x.  y ) )
9081, 70, 65, 89leadd2dd 9403 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  x
) )  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9180, 90eqbrtrrd 4061 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  x  <_  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) ) )
9261, 69remulcld 8879 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  y )  e.  RR )
9383simp2d 968 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  0  <_  t
)
9464, 69, 61, 93, 88lemul2ad 9713 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( t  x.  x )  <_  (
t  x.  y ) )
9565, 92, 70, 94leadd1dd 9402 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  (
( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9674oveq1d 5889 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( 1  x.  y ) )
9733adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  y  e.  CC )
9872, 76, 97adddird 8876 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  +  ( 1  -  t ) )  x.  y )  =  ( ( t  x.  y
)  +  ( ( 1  -  t )  x.  y ) ) )
9997mulid2d 8869 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( 1  x.  y )  =  y )
10096, 98, 993eqtr3d 2336 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  y
) )  =  y )
10195, 100breqtrd 4063 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  <_  y
)
102 elicc2 10731 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y )  <-> 
( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  RR  /\  x  <_  ( (
t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  <_  y )
) )
10364, 69, 102syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  ( x [,] y
)  <->  ( ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  e.  RR  /\  x  <_ 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  /\  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y ) )  <_ 
y ) ) )
10471, 91, 101, 103mpbir3and 1135 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  ( x [,] y ) )
10559, 104sseldd 3194 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
106105ralrimiva 2639 . . . . . . . . . . . . . 14  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
107106adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  A. t  e.  ( 0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
108 oveq1 5881 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
t  x.  x )  =  ( ( 1  -  s )  x.  x ) )
109 oveq2 5882 . . . . . . . . . . . . . . . . 17  |-  ( t  =  ( 1  -  s )  ->  (
1  -  t )  =  ( 1  -  ( 1  -  s
) ) )
110109oveq1d 5889 . . . . . . . . . . . . . . . 16  |-  ( t  =  ( 1  -  s )  ->  (
( 1  -  t
)  x.  y )  =  ( ( 1  -  ( 1  -  s ) )  x.  y ) )
111108, 110oveq12d 5892 . . . . . . . . . . . . . . 15  |-  ( t  =  ( 1  -  s )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  =  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) ) )
112111eleq1d 2362 . . . . . . . . . . . . . 14  |-  ( t  =  ( 1  -  s )  ->  (
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  <->  ( (
( 1  -  s
)  x.  x )  +  ( ( 1  -  ( 1  -  s ) )  x.  y ) )  e.  A ) )
113112rspcv 2893 . . . . . . . . . . . . 13  |-  ( ( 1  -  s )  e.  ( 0 [,] 1 )  ->  ( A. t  e.  (
0 [,] 1 ) ( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A  -> 
( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  (
1  -  s ) )  x.  y ) )  e.  A ) )
11450, 107, 113sylc 56 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( ( 1  -  s )  x.  x )  +  ( ( 1  -  ( 1  -  s
) )  x.  y
) )  e.  A
)
11548, 114eqeltrd 2370 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_ 
y ) )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
116115ralrimiva 2639 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. s  e.  ( 0 [,] 1
) ( ( s  x.  y )  +  ( ( 1  -  s )  x.  x
) )  e.  A
)
117 oveq1 5881 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
s  x.  y )  =  ( t  x.  y ) )
118 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
1  -  s )  =  ( 1  -  t ) )
119118oveq1d 5889 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( 1  -  s
)  x.  x )  =  ( ( 1  -  t )  x.  x ) )
120117, 119oveq12d 5892 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  =  ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) ) )
121120eleq1d 2362 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( ( s  x.  y )  +  ( ( 1  -  s
)  x.  x ) )  e.  A  <->  ( (
t  x.  y )  +  ( ( 1  -  t )  x.  x ) )  e.  A ) )
122121cbvralv 2777 . . . . . . . . . 10  |-  ( A. s  e.  ( 0 [,] 1 ) ( ( s  x.  y
)  +  ( ( 1  -  s )  x.  x ) )  e.  A  <->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
123116, 122sylib 188 . . . . . . . . 9  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  x  <_  y ) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  y )  +  ( ( 1  -  t )  x.  x
) )  e.  A
)
12418, 23, 10, 123, 106wloglei 9321 . . . . . . . 8  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A
) )  ->  A. t  e.  ( 0 [,] 1
) ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
125124r19.21bi 2654 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A ) )  /\  t  e.  ( 0 [,] 1 ) )  ->  ( ( t  x.  x )  +  ( ( 1  -  t )  x.  y
) )  e.  A
)
126125anasss 628 . . . . . 6  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( ( x  e.  A  /\  y  e.  A )  /\  t  e.  ( 0 [,] 1
) ) )  -> 
( ( t  x.  x )  +  ( ( 1  -  t
)  x.  y ) )  e.  A )
12713, 126sylan2b 461 . . . . 5  |-  ( ( ( A  C_  RR  /\  J  e.  Con )  /\  ( x  e.  A  /\  y  e.  A  /\  t  e.  (
0 [,] 1 ) ) )  ->  (
( t  x.  x
)  +  ( ( 1  -  t )  x.  y ) )  e.  A )
128 eqid 2296 . . . . 5  |-  ( (
TopOpen ` fld )t  A )  =  ( ( TopOpen ` fld )t  A )
12912, 127, 4, 128cvxscon 23789 . . . 4  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  (
( TopOpen ` fld )t  A )  e. SCon )
1309, 129eqeltrrd 2371 . . 3  |-  ( ( A  C_  RR  /\  J  e.  Con )  ->  J  e. SCon )
131130ex 423 . 2  |-  ( A 
C_  RR  ->  ( J  e.  Con  ->  J  e. SCon ) )
1323, 131impbid2 195 1  |-  ( A 
C_  RR  ->  ( J  e. SCon 
<->  J  e.  Con )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   class class class wbr 4039   ran crn 4706   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    <_ cle 8884    - cmin 9053   (,)cioo 10672   [,]cicc 10675   ↾t crest 13341   TopOpenctopn 13342   topGenctg 13358  ℂfldccnfld 16393   Conccon 17153  PConcpcon 23765  SConcscon 23766
This theorem is referenced by:  iooscon  23793  iccscon  23794  iccllyscon  23796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-con 17154  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903  df-ii 18397  df-htpy 18484  df-phtpy 18485  df-phtpc 18506  df-pcon 23767  df-scon 23768
  Copyright terms: Public domain W3C validator